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Введение 

В [1], на основе двумерной модели [2], 

представлена модернизированная методика 

определения предельного угла поворота па-

кета – композиции из соударившихся частей 

пластин при их косом соударении. Однако, 

как в [1], так и [2] предполагалось, что пер-

вая (ударник) и вторая пластины достаточ-

но удалены друг от друга. В настоящей ра-

боте предложен критерий выбора мини-

мального (критического) значения зазора 

между ударником и второй пластиной, при 

котором расчётная методика еще остается 

справедливой. Также разработан способ рас-

чёта максимального импульса ПД при зазоре 

между этими пластинами меньше критиче-

ского значения. 

Методы расчёта 

Выпишем из [1] некоторые обозначения, 

которыми будем пользоваться в настоящей 

работе: (x, y) – система декартовых коорди-

нат, связанная с фронтом детонации, где ось 

x направлена вдоль первоначального поло-

жения ударника в противоположную от 

движения фронта сторону, ось y – в сторону 

смещения пластины; y0 – расстояние от 

ударника до мишени (последняя пластина); 

x0 – абсцисса начала движения пакета; H –

Научная статья 
Original article 
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толщина слоя взрывчатого вещества (ВВ); 

r – отношение массы ВВ к массе пакета или 

пластины (коэффициент нагрузки); k – ин-

тегральный показатель политропы заряда 

ВВ. Введём дополнительные обозначения: iy 

– проекция на ось y максимального импуль-

са продуктов детонации; 𝑖𝑦𝑟0
 – значение iy , 

соответствующее полному разгону ударни-

ка; 𝑖𝑦𝑟 – значение iy , соответствующее пол-

ному разгону пластины массой, равной мас-

се пакета; h – первоначальное расстояние 

(зазор) между соседними пластинами; βпред. – 

предельный угол поворота пакета; pD – дав-

ление детонации. 

Пусть x0 → 0 (h→ 0), тогда 𝑖𝑦 → 𝑖𝑦𝑟. Пред-

ставленный в [1, 2] метод определения βпред. 

(или iy) здесь приводит к физическому про-

тиворечию: 𝑖𝑦 → 𝑖𝑦𝑟0
. Отсюда следует, что 

существует некоторое критическое значе-

ние xкр. (или hкр.), меньше которого этот (ос-

новной) метод формально теряет силу, а по-

этому требуется разработать другой (до-

полнительный) метод расчёта, действи-

тельный при 𝑥0 ≤ 𝑥кр..  

Рассмотрим условие применимости ос-

новного метода расчёта: 

𝑥∗ ≥ 𝑥0 ≥ 𝑥кр.,                                                                                                

где x* – значение x, при котором импульс ПД, 

с практической точки зрения, достигает 

максимального значения, то есть считается, 

что пластины после соударения разогнались 

до предельной скорости. 

Тогда можно пользоваться приближением: 

𝑝(𝑥∗) ≈ 𝑝𝑟0
(𝑥∗),                                                                                           

где p – давление в ПД у поверхности пакета; 

𝑝𝑟0
 – давление в ПД у поверхности свободно 

метаемого ударника.  

В [2] абсциссу x* находили из выражения: 

𝑝𝑟0
(𝑥∗)

𝑝𝐷
= ɛ,                                                                                                               

где ɛ – наперёд заданная сколь угодно малая 

величина. 

В [1] предложено использовать равенство: 

𝑝𝑟(𝑥∗)−𝑝𝑟0
(𝑥∗)

𝑝𝐷
= ɛ,                                                                                         

где pr – давление в ПД у поверхности сво-

бодно метаемой пластины, массой равной 

массе пакета с коэффициентом нагрузки r. 

Последняя формула, в отличие от предыду-

щего выражения, обеспечивает более кор-

ректный выбор 𝜀, что позволяет, на пример, 

строить графические зависимости βпред. от h 

с плавным изменением предельного угла. 

В настоящей работе x* определяли из урав-

нения: 

𝑝0(𝑥∗) − 𝑝𝑟0
(𝑥∗) = ∆𝑝𝑚𝑖𝑛,                                                        

где p0 – пиковое давление остаточных про-

дуктов детонации (часть ПД, которая про-

должает воздействовать на пластины с мо-

мента их соударения), равное давлению на 

фронте отраженной ударной волны в ПД при 

соударении ударника и мишени, у которой 

масса равна массе пакета; ∆pmin – прираще-

ние давления на фронте отраженной удар-

ной волны в ПД при x0 = x*. 

Главным достоинством этого уравнения 

является его способность к унификации ме-

тода поиска x*. Это достигается за счет зада-

ния одного достаточно малого значения 

(∆pmin / pD), единого для всех режимов соуда-

рения. Так, в настоящей работе использова-

лось значение (∆pmin/pD) = 10-6, при котором 

ɛ ∼ (10-13–10-17). Проверка показала, что 

дальнейшее уменьшение (∆pmin / pD) уже не 

оказывало существенного влияния на рас-

чётные значения βпред. 

Применив основной метод определения 

предельного угла поворота пакета из двух 

пластин, с учётом приведенных выше по-

правок, было установлено, что с уменьшени-

ем h величина βпред. растёт до определенного 

максимума, после которого снижается, но с 
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темпом, превосходящим предыдущий темп 

роста. В качестве примера, на рис. 1 показана 

зависимость βпред. от h/H при k = 2,5 для слу-

чая соударения двух пластин, равных по 

массе. Откуда видно, что в диапазоне h/H от 

0,0864, где βпред. достиг своего максимума, до 

0,0469, где зафиксировано максимальное 

приращение давления (∆p) на фронте отра-

женной ударной волны в ПД, образованной в 

результате соударения ударника и мишени, 

предельный угол уменьшился на 0,28. А на 

таком же расстоянии с противоположной 

стороны от максимума в диапазоне h/H от 

0,126 до 0,0864 этот угол изменился (увели-

чился) всего на 0,09. На рис. 2 представлен 

предельный случай обнаруженной законо-

Рис. 1. Графические зависимости предельного угла от зазора между ударником и 
мишенью с одинаковыми коэффициентами нагрузки, равными 12 

Рис. 2. Графические зависимости предельного угла от зазора между ударником и 
мишенью, у которых коэффициент нагрузки равен 12 и 5 соответственно 
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мерности. Здесь показана аналогичная зави-

симость при k = 2,5, где по достижении βпред. 

и ∆p своих максимумов эти величины терпят 

разрыв. Перепад у ∆p объясняется процес-

сом перехода от прямой к косой отражен-

ным ударным волнам в ПД [3]. Наличие же 

перепада у βпред., по-видимому, не имеет фи-

зического обоснования. Исходя из вышеиз-

ложенного, можно предположить, что мак-

симум функции 𝑖𝑦(𝑥0) является критерием 

выбора критического значения зазора меж-

ду ударником и второй пластиной. На рис. 1 

и 2 – это точка с координатами (𝛽ℎкр.

пред.
, hкр.). 

 Теперь рассмотрим условие, в рамках ко-

торого требуется разработать дополнитель-

ный способ расчёта iy: 

𝑥кр. ≥ 𝑥0 ≥ 0. 

Согласно рис. 3: 
𝑑𝐼𝑦

𝑑𝑋0
= 𝑡𝑔𝛼.                                                                                                               (1) 

Пусть: 

𝛼 = 𝛼0 − ∆𝛼, 

где ∆α – некоторое приращение угла α. 

Из соображения простоты считаем, что ∆α 

изменяется по линейному закону:  

∆𝛼 = 𝛼0

𝑋0

𝑋кр.
. 

Подстановка этого выражения в преды-

дущее уравнение дает окончательный вид 

зависимости для α в указанном выше интер-

вале: 

𝛼 = 𝛼0 (1 −
𝑋0

𝑋кр.
).                                                                                      (2) 

После интегрирования (1), с учетом (2) и 

соответствующих преобразований, получим:  

𝐼𝑦 = 𝐼кр. +
𝑋кр.

𝛼0
𝑙𝑛 𝑐𝑜𝑠 𝛼.                                                                   (3) 

Угол α0 определяется через подстановку в 

(3) известного Iyr. 

На рис. 1 и 2 представлены графики, по-

строенные с применением вышеизложенно-

го дополнительного метода расчёта. Угол 

βпред. находили согласно закону сохранения 

импульса, используя выражение: 

𝐼𝑦 =
𝑠𝑖𝑛 𝛽пред.

𝑟
 

Отметим, что в случае многослойного ме-

тания дополнительный метод распростра-

няется только на метание слоя, состоящего 

из первых двух пластин. Метание последу-

ющих слоёв рассчитывается с использова-

нием основного метода.  

Рис. 3. Иллюстрация зависимостей Iy от X0 для двухслойного метания пластин: 

 𝐼y =
𝑖y

𝑚вв𝐷
 , где mвв, D – масса и скорость детонации ВВ, соответственно; Х0 = x0/H;  

α – угол наклона к оси абсцисс касательной к функции Iy(X0) в текущей точке;   
α0 – начальное значение α.  

Графические зависимости предельного угла от зазора между ударником и мише-
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Результаты расчетов и экспериментов 
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 βу, град. 

Расчет 

Э
к

сп
ер

и
м

ен
т

 

х 103, м осн. доп.* 

1 

Аммонит 
АТ-1 (1,0) 

70 

2970 

Алюминий АД0 

2 12,9 

2,6 

5,28 
(25,16) 

1,5 

∞ 24,27 26,63 - 
2 12,9 24,2 23,13 24,92 24,8 

2 2975 
10 2,59 8,76 

(12,95) 
∞ 12,54 13,45 - 

10 2,59 21,0 11,65 11,53 11,6 

3 2850 
2 12,9 1,82 

(14,50) 
∞ 14,48 14,55 - 

10 2,59 30,5 14,35 14,41 15,0 

4 
Смесь 6ЖВ 
/АСК =1/6 

(0,87) 
50 2270 

Медь М1 4 1,22 

2,3 

6,45 
(12,77) 

4,0 
∞ 12,74 12,80 - 

Титан ВТ1-0 4 2,42 10,9 10,37 10,39 10,4 

5 
Смесь 6ЖВ 

/АСК 
=1/5 (0,87) 

40 2330 
Медь М1 4 0,98 

4,86 
(10,93) 

4,5 
∞ 10,93 10,93 - 

Титан ВТ1-0 4 1,93 13,1 9,58 9,58 9,8 

6 
Смесь 6ЖВ 
/АСК =1/4 

(0,87) 
30 2210 

Медь М1 4 0,73 
3,28 

(8,79) 
4,0 

∞ 8,79 - - 

Титан ВТ1-0 4 1,45 12,5 8,03 - 8,1 

7 
Аммонит 6ЖВ 

(0,90) 
20 3970 

Ал. сплав АМг2 1,9 3,53 

2,45 

2,75 
(18,93) 

1,5 ∞ 18,80 19,11 - 
Алюминий А6 1,5 4,44 

- 1,0 
∞ 13,42 13,50 - 

Ал. сплав АМг2 1,9 
3,53 

12,3 12,97 13,04 13,4 

8 
АСМ 

(0,85) 
20 1510 

3,34 

2,0 

3,89 
(26,16) 

1,5 ∞ 25,53 26,18 - 
Алюминий А6 1,5 4,20 

- 1,0 
∞ 18,88 19,03 - 

Ал. сплав АМг2 1,9 
3,34 

10,0 17,44 17,58 17,0 

9 

Смесь 
АСМ/ДМ 

=3/1 (0,70) 
50 

3125 

6,87 

2,15 

6,89 
(31,51) 

 
1,5 ∞ 29,54 31,99 - 

Алюминий А6 1,5 8,64 

- 1,0 
∞ 21,87 22,33 - 

Ал. сплав АМг2 1,9 6,87 24,8 20,80 21,22 20,3 

 
10 

 

 
3070 

6,89 
(31,51) 

1,5 ∞ 29,54 31,99 - 

Алюминий А6 1,5 8,64 

- 1,0 ∞ 21,87 22,33 - 

Ал. сплав АМг2 1,9 6,87 

- 1,9 ∞ 18,26 18,66 - 

Алюминий А6 1,5 8,64 

- 1,0 
∞ 15,07 15,41 - 

Ал. сплав АМг2 1,9 6,87 
26,3 14,73 15,05 15,8 

11 
Смесь АСМ+ 
5%ИМ.(0,72) 

50 3200 

Ал. сплав АМг2  7,07 

2,35 

5,90 
(26,94) 

1,5 ∞ 25,80 27,77 - 
Алюминий А6 1,5 8,89 

- 1,0 
∞ 18,88 19,28 - 

Ал. сплав АМг2 1,9 7,07 24,7 18,16 18,53 19,0 
 
Примечания: АСК(М) – аммиачная селитра кристаллическая (мелкого помола), Гл. –глицерин технический,  
ИМ – индустриальное масло; ДМ – древесная мука (содержание сыпучих компонентов для смесевых взрывчатых 
веществ дано в объемном соотношении, содержание жидких компонентов – от объема аммиачной селитры);  
βy – угол поворота пакета на расстоянии y от ударника. * – в опытах с многослойным метанием расчеты по  
дополнительному методу проводились только для метания слоя из первых двух пластин. 
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 Экспериментальная проверка 

 В таблице приведены результаты расче-

тов и экспериментов, полученные с исполь-

зованием опытных данных [4]. Из этой таб-

лицы видно, что во всех опытах, кроме 

оп. №6, h <  hкр. При этом hкр. существенно 

уменьшается, если масса второй пластины 

значительно больше массы ударника 

(оп. №3).  

Из той же таблицы следует, что значения 

βпред., полученные с использованием как ос-

новного, так и дополнительного методов 

расчёта, хорошо совпадают с соответствую-

щими значениями этого угла, полученными 

из экспериментов. Расхождения расчёта, по 

основному и дополнительному методам, и 

эксперимента колебались в диапазоне от 

0,29% (оп. № 4) до 6,77% (оп. № 10), что в 

среднем составило 3,12%, и от 0,1% (оп. № 

4) до 4,75% (оп. № 10), что в среднем соста-

вило 2,52%, соответственно. Это показыва-

ет, что даже незначительные в масштабе 

сварки взрывом зазоры между ударником и 

второй пластиной оказались недостаточно 

малыми, чтобы результаты по основному и 

дополнительному расчётным методам суще-

ственно различались между собой. 

Выводы 

1. Оптимизирован основной метод расчё-

та максимального импульса продуктов де-

тонации для косого соударения нескольких 

пластин в условиях сварки взрывом. 

2. Разработан дополнительный метод 

расчёта максимального импульса продуктов 

детонации для косого соударения двух пла-

стин, когда зазор между ними меньше кри-

тического значения. 

3. Критическое значение зазора опреде-

ляется по основному методу расчёта и соот-

ветствует экстремуму функции максималь-

ного импульса продуктов детонации от раз-

мера зазора. 

4. В промышленных условиях сварку 

взрывом проводят на режимах, при которых 

зазор между пластинами, если и меньше 

критического значения, то не настолько, 

чтобы результаты, полученные с помощью 

основного и дополнительного методов рас-

чёта, существенно различались. 
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При сварке взрывом металлических пла-

стин по наиболее распространенной плоско-

параллельной схеме в воздушном зазоре 

между пластинами при их соударении воз-

никает область ударно-сжатого газа (УСГ), 

нагретого до нескольких тысяч градусов [1, 
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2]. Двигаясь перед точкой контакта область 

УСГ за счет конвективного теплообмена 

нагревает поверхности пластин еще до их 

соударения [3]. В работе [4] предложен экс-

периментальный термопарный метод, осно-

ванный на эффекте Зеебека, для определе-

ния теплового потока от ударно-сжатого 

воздуха и позволяющий определять темпе-

ратуры подогрева поверхностей пластин пе-

ред соударением. Заполнение зазора инерт-

ными газами, такими как аргон и гелий [5] 

показало, что мощность теплового потока от 

УСГ существенно зависит от кумулятивных 

процессов перед точкой контакта (количе-

ством металлических частиц и их распреде-

лением по длине области УСГ) и плотности 

газа, заполняющего зазор. Однако использу-

емый в работах [4, 5] термопарный метод 

исключительно чувствителен к электриче-

ских помехам, возникающим при высоко-

скоростном соударении металлов. Это огра-

ничивает использование термопарного ме-

тода при сварке взрывом немагнитными ма-

териалами. 

В данной работе разработан терморези-

стивный метод, основанный на изменении 

электрического сопротивления медного 

проводника при его конвективном нагреве 

ударно-сжатой средой. 

В качестве терморезистивного датчика 

использовалось покрытие из медной фольги 

1 размещенной на подложке 2 (см. рис. 1). 

Медное покрытие подвергалось травлению 

таким образом, чтобы образовалась плоская 

бифилярная катушка, уменьшающая пара-

зитную индуктивность и магнитные помехи 

за счёт взаимной компенсации магнитных 

полей встречно-направленных токов в со-

седних проводниках. Зависимость электри-

ческого сопротивления такого датчика от 

температуры описывается формулой: 

𝑅(𝑇) =
𝜌𝐿

𝑆
[1 + 𝛼(𝑇 − 20) ], 

                          
(1) 

где 𝛼=0,0043 °С-1 – температурный коэффи-

циент электрического сопротивления меди, 

𝜌=1,72∙10−8 Ом∙м – удельное сопротивление 

меди при 20°С.  

Сопротивление терморезистивного дат-

чика при толщине медного слоя 15 мкм и 

Рис. 1. Геометрические размеры (а) и внешний вид (б) планарных  
терморезистивных датчиков 

а б 
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Рис. 3.  Схема подключения терморезистивного датчика к питающей и  
измерительной аппаратуре (а) и калибровочное напряжение на датчике (б) 

 

а 

б 

геометрических размерах указанных на рис. 

1 составляло 0,055±0,001 Ом.  

Схема эксперимента показана на рис. 2. 

Сваривались стальные пластины толщиной 

3,5 мм и размерами 465 на 150 мм установ-

ленные по плоско-параллельной схеме с за-

зором 8 мм. Терморезистивный датчик раз-

мещался на изоляторе из дерева в колодце в 

неподвижной стальной пластине (рис. 2, б) 

на расстоянии 360 мм от начала пластины.  

Для обеспечения одинаковых условий теп-

лообмена с ударно-сжатым газом, плоскость 

датчика была параллельна плоскости пла-

стин. Верхняя пластина металась зарядом 

взрывчатого вещества (смесь аммонита 6ЖВ 

с кварцевым песком в соотношении 67/33 % 

об.) высотой H=25 мм. Скорость детонации 

контролировалась электроконтактным спо-

Рис. 2. Схема измерения теплового потока при сварке взрывом стальных пластин (а) 
толщиной 3,5+3,5 мм в среде воздуха и колодец в неподвижной пластине с 

размещенным на изоляторе терморезистивным датчиком (б) 
 

а б 
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собом и составила 2660 ± 50 м/с.  

После начала сварки взрывом (момент 

инициирования заряда ВВ) через датчик 

пропускался импульс постоянного тока (IГТ = 

2,73 ± 0,001 А) длительностью 0,4…1,3 мс. 

Под воздействием области ударно-сжатого 

газа чувствительный медный слой толщи-

ной 15 мкм прогревается за 2,5…3 мкс и 

изменяет свое электрическое сопротивле-

ние, что фиксируется цифровым осцилло-

графом (Tektronix MSO 4054). Датчик под-

ключался к питающей и измерительной ап-

паратуре по четырёхточечной схеме, так как 

показано на рис. 3, а. Калибровочное напря-

жение Uкал при прохождении импульса по-

стоянного тока через терморезистивный 

датчик при температуре равной температу-

ре окружающей среды T0 составляло  152 мВ 

(см. рис. 3, б). 

На рис. 4 показана осциллограмма про-

цесса нагрева терморезистивного датчика. В 

какой-то момент времени фронт ударной 

Рис. 4. Типичная осциллограмма напряжения на терморезистивном датчике при 
сварке взрывом стальных пластин в среде воздуха (Vк = 2660 м/с) 

Рис. 5. Экспериментальная зависимость средней температуры медного слоя  
терморезистивного датчика 
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волны достигает датчика и нагревает его 

конвективным тепловым потоком. Это при-

водит к монотонному росту напряжения, 

обусловленного увеличением сопротивле-

ния датчика, вплоть до момента налетания 

метаемой пластины на датчик, его разруше-

ния и резкого обрыва сигнала. Время воз-

действия tl области УСГ на датчик, располо-

женный на расстоянии L=0,36 м от начала 

сварки, составило 36 мкс. При скорости 

точки контакта Vк равной скорости детона-

ции D скорость фронта ударной волны в 

воздухе составила [5]: 

𝑉УВ =
𝐿

𝐿
𝑉к

⁄ −𝑡𝑙
= 3620 м/с, 

                         
 

а размеры высокотемпературной области, в 

момент достижения датчика фронтом удар-

ной волны в газе, достигли: 

𝐿 (1 −
𝑉к

𝑉УВ
⁄ ) =95 мм. 

Таким образом, скорость фронта ударной 

волны в воздухе составила 1,36Vк, что хо-

рошо соотносится с данными работ [4, 5] где 

были получены схожие значения при сварке 

взрывом медных пластин в среде воздуха, 

гелия и аргона. 

Используя экспериментальную осцилло-

грамму (рис. 4), можно определить прира-

щение средней температуры медного слоя 

терморезистивного датчика от времени по 

формуле: 

∆𝑇(𝑡) =
(

𝑈(𝑡)экс
𝑈калиб

 −1)

0,0043
.
                                         

(2) 

Рассчитанное таким образом изменение 

температуры T датчика показано на рис. 5. 

Начальный прогрев медного слоя при воз-

действии фронта ударной волны осуществ-

лялся за время 2,5-3 мкс (при общем време-

ни теплового воздействия около 36 мкс) и в 

дальнейшем разница температур между 

внешней и внутренней поверхностью мед-

ного слоя не превышала 5%, а сам датчик 

непрерывно измерял осреднённую по тол-

щине медного слоя температуру датчика.  

Используя экспериментальную зависи-

мость изменения средней температуры 

медного слоя датчика решением обратной 

задачи (по методике, описанной в [6]) была 

определена мощность теплового потока от 

УСГ (см. рис. 6). Видно, что по сравнению с 

тепловым потоком при сварке взрывом 

медных пластин в воздушной среде, опреде-

ленным в работе [5] (0,4 ГВт/м2), тепловой 

поток при сварке стальных пластин резко 

отличается по длине области УСГ и характе-

ризуется максимальными значениями на 

фронте ударной волны (0,65 ГВт/м2) и 

вблизи точки контакта (0,85 ГВт/м2). В ос-

Рис. 6. Изменение мощности теплового потока от ударно-сжатого воздуха при  
сварке взрывом стальных пластин 
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новной (центральной) области УСГ значения 

теплового потока составляет  0,05 ГВт/м2. 

Разница в мощности теплового потока по 

длине области УСГ при сварке меди и стали 

может быть обусловлена разным характе-

ром протекания кумулятивных процессов 

при соударении и совместной пластической 

деформации стальных и медных пластин, а 

также разной плотностью  «впрыскивае-

мых» в зазор стальных и медных частиц. 

Выводы 

1. Разработан терморезистивный метод 

определения теплового потока от ударно-

сжатого воздуха в зазоре между пластинами 

при их сварке взрывом, менее чувствитель-

ный к электрическим помехам в сравнении с 

термопарным методом, а также предложена 

конструкция малоинерционного терморези-

стивного датчика. 

2. Впервые получены значения теплового 

потока от УСГ при сварке взрывом стальных 

пластин. Установлено, что, в отличии от 

сварки взрывом медных пластин, мощность 

теплового потока существенно меняется по 

длине области ударно-сжатого газа и мак-

симальна вблизи точки контакта и на фрон-

те ударной волны.  

3. Показано, что на мощность теплового 

потока влияет характер протекания кумуля-

тивных процессов перед точкой контакта, 

которые в свою очередь зависят от матери-

ала свариваемых пластин. 

 
Библиографический список 

 

1. Ishutkin, S. N. Thermal action of shock-compressed 
gas on the surface of colliding plates / S. N. Ishutkin, V. I. 
Kirko, and V. A. Simonov // Combustion, Explosion and 
Shock Waves. – 1980. – Vol. 16. – Pp. 663-667. 
https://doi.org/10.1007/BF00741515 

2. Kudinov, V. M. Explosion welding in metallurgy [in 
Russian] / V. M. Kudinov, A. Ya. Koroteev. – Мoscow: Met-
allurgy. – 1978. – 166 p. 

3. Zakharenko, I. D. Explosive Welding of Metals [in 
Russian] / I. D. Zakharenko. – Minsk: Nauka Tekhnika. – 
1990. – 204 p. 

4. Investigation of thermal processes in the gap dur-
ing explosion welding / S. V. Khaustov, V. V. Pai, V. I. Lysak, 
S. V. Kuz'min // International Journal of Heat and Mass 
Transfer. – 2023. – Vol. 209. – P. 124166. 
https://doi.org/10.1016/j.ijheatmasstransfer.2023.12416
6  

5. The influence of the shock-compressed gas compo-
sition in the gap between metal plates on the processes 
occurring before contact point during explosion welding / 
S. V. Khaustov, V. V. Pai, V. I. Lysak, S. V. Kuz'min, A. D. 
Kochkalov // International Journal of Heat and Mass 
Transfer. – 2025. – Vol. 244. – P. 126920. 
https://doi.org/10.1016/j.ijheatmasstransfer.2025.12692
0. 

6. Thermal effect of explosive detonation products on 
a flyer plate in the explosive welding of metals / S. V. 
Khaustov, V. V. Pai, Y. L. Lukyanov, V. I. Lysak, S. V. Kuz'min 
// International Journal of Heat and Mass Transfer. – 2020. 
– Vol. 163. P. 120469. 
https://doi.org/10.1016/j.ijheatmasstransfer.2020.12046
9 

 
 
Информация об авторах 

 
Святослав Викторович Хаустов – кандидат технических наук, доцент кафедры 
«Оборудование и технология сварочного производства» ФГБОУ ВО «Волгоградский 
государственный технический университет» 
https://orcid.org/0000-0002-7245-7195 
е-mail: regent_k@mail.ru 

Владимир Васильевич Пай – доктор физико-математических наук, исполняющий 
обязанности заведующего лаборатории динамических воздействий Института 
гидродинамики им. М.А. Лаврентьева СО РАН  
е-mail: pai@hydro.nsc.ru 

Сергей Викторович Кузьмин – член-корреспондент РАН, доктор технических наук, 
профессор, первый проректор ФГБОУ ВО «Волгоградский государственный технический 
университет» 
https://orcid.org/0000-0003-2802-8497 
е-mail: weld@vstu.ru 

https://doi.org/10.1007/BF00741515
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124166
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124166
https://doi.org/10.1016/j.ijheatmasstransfer.2025.126920
https://doi.org/10.1016/j.ijheatmasstransfer.2025.126920
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120469
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120469
https://orcid.org/0000-0002-7245-7195
mailto:regent_k@mail.ru
mailto:pai@hydro.nsc.ru
https://orcid.org/0000-0003-2802-8497
mailto:weld@vstu.ru


Известия ВолгГТУ 

 

18 

Владимир Ильич Лысак – академик РАН, доктор технических наук, профессор, научный 
руководитель ФГБОУ ВО «Волгоградский государственный технический университет» 
https://orcid.org/0000-0003-3066-058X 
е-mail: lysak@vstu.ru 

Алексей Дмитриевич Кочкалов – аспирант ФГБОУ ВО «Волгоградский государственный 
технический университет» 
https://orcid.org/0009-0009-9725-4974 
е-mail: ko4kalov2011@gmail.com 

Виктор Витальевич Агеев – магистрант ФГБОУ ВО «Волгоградский государственный 
технический университет» 
e-mail: frosttboll_1337@bk.ru  

Максим Юрьевич Емельяненко – магистрант ФГБОУ ВО «Волгоградский государственный 
технический университет» 
e-mail: maksemelyanenko123@gmail.com 

  
Information about the authors 

 
Svyatoslav V. Khaustov – Candidate of Technical Sciences, Associate Professor of the Department of 
Equipment and Technology of Welding Production, Volgograd State Technical University 
https://orcid.org/0000-0002-7245-7195 
е-mail: regent_k@mail.ru 

Vladimir V. Pai - Doctor of Physico-Mathematical Sciences, Acting Head of the Laboratory of 
Dynamic Effects of Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian 
Academy of Sciences 
e-mail: pai@hydro.nsc.ru 

Sergey V. Kuzmin – Corresponding Member of the Russian Academy of Sciences, Doctor of 
Technical Sciences, Professor, First Vice-Rector of the Volgograd State Technical University 
https://orcid.org/0000-0003-2802-8497 
е-mail: weld@vstu.ru 

Vladimir I. Lysak – Academician of the Russian Academy of Sciences, Doctor of Technical Sciences, 
Professor, Scientific Director of the Volgograd State Technical University 
https://orcid.org/0000-0003-3066-058X 
е-mail: lysak@vstu.ru 

Alexey D. Kochkalov is a postgraduate student at Volgograd State Technical University 
https://orcid.org/0009-0009-9725-4974 
е-mail: ko4kalov2011@gmail.com 

Viktor V. Ageev is a Master's student at Volgograd State Technical University 
e-mail: frosttboll_1337@bk.ru  

Maxim Y. Emelianenko is a Master's student at Volgograd State Technical University 
e-mail: maksemelyanenko123@gmail.com 

 
 Вклад авторов 

 
С. В. Хаустов – определение цели работы, анализ экспериментов, написание текста статьи 

В. В. Пай – разработка методологии 

С. В. Кузьмин – научное руководство, анализ и интерпретация полученных данных 

В. И. Лысак – научное руководство 

А. Д. Кочкалов – подготовка и проведение эксперимента  

https://orcid.org/0000-0003-3066-058X
mailto:lysak@vstu.ru
https://orcid.org/0009-0009-9725-4974
mailto:ko4kalov2011@gmail.com
mailto:frosttboll_1337@bk.ru
mailto:maksemelyanenko123@gmail.com
https://orcid.org/0000-0002-7245-7195
mailto:regent_k@mail.ru
mailto:pai@hydro.nsc.ru
https://orcid.org/0000-0003-2802-8497
mailto:weld@vstu.ru
https://orcid.org/0000-0003-3066-058X
mailto:lysak@vstu.ru
https://orcid.org/0009-0009-9725-4974
mailto:ko4kalov2011@gmail.com
mailto:frosttboll_1337@bk.ru
mailto:maksemelyanenko123@gmail.com


Известия ВолгГТУ  

 

19 

В. В. Агеев, М. Ю. Емельяненко – подготовка материалов для проведения исследований 
 

Contribution of the authors 
 

S. V. Khaustov – defining the purpose of the work, analyzing experiments, writing the text of the 
article 

V. V. Pai – methodology development 

S. V. Kuzmin – scientific guidance, analysis and interpretation of the data obtained 

V. I. Lysak – scientific guidance 

A. D. Kochkalov – preparation and conduct of the experiment 

V. V. Ageev, M. Y. Emelianenko – preparation of materials for research 
 
 

Статья поступила в редакцию 15.10.2025, доработана 13.11.2025,  
подписана в печать 21.11.2025 

 
The article was submitted 15.10.2025, revised 13.11.2025,  

accepted for publication 21.11.2025 



Известия ВолгГТУ 

 

20 

© О. Л. Первухина, И. В. Денисов, Л. Б. Первухин, Т. А. Шишкин 2025  

О. Л. Первухина, И. В. Денисов, Л. Б. Первухин*, Т. А. Шишкин* 

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ГРАНУЛИТОВ ДЛЯ СВАРКИ ВЗРЫВОМ  

ИСМАН им. А. Г. Мержанова РАН, г. Черноголовка  
*ООО «Битруб Интернэшнл», г. Красноармейск  

Автор, ответственный за переписку: Ольга Леонидовна Первухина (opervukhina@mail.ru) 

Аннотация: В работе исследовано влияние состава взрывчатого вещества на скорость детонации 
при сварке взрывом, а также свойства полученных биметаллов для определения оптимальных ре-
жимов сварки взрывом. Показано, что использование для сварки взрывом гранулита РП-3 исклю-
чает бризантное воздействие на поверхность плакирующего слоя благодаря наличию порошкооб-
разной составляющей между гранулами пористой аммиачной селитры. За счёт подбора соотноше-
ния гранулированной и молотой селитры обеспечивается стабильная детонацию взрывчатого ве-
щества с требуемой скоростью детонации независимо от температуры и влажности воздуха.  

Ключевые слова: Аммиачная селитра, скорость детонации, бризантное воздействие, испытания,  
прочность 

Благодарности: В. Х. Кантору за организацию и проведение экспериментов  

Для цитирования: Первухина О. Л., Денисов И. В., Первухин Л. Б., Шишкин Т. А. Исследование воз-
можности применения гранулитов для сварки взрывом. Известия ВолгГТУ; 2025; 306(11):20–28. 
https://doi.org/10.35211/1990-5297-2025-11-306-20-28 

 

O. L. Pervukhina, I. V. Denisov, L. B. Pervukhin, T. A. Shishkin 

INVESTIGATION OF THE POSSIBILITY OF USING GRANULITES FOR EXPLOSION WELDING  
 

Merzhanov Institute of Structural Macrokinetics and Materials Science RAS, Chernogolovka  
* Bitrub International, Krasnoarmeysk  

The author responsible for the correspondence: Olga Leonidovna Pervukhina (opervukhina@mail.ru) 

Annotation: This article examines the effect of explosive composition on the detonation velocity during 
explosion welding. The properties of the manufactured bimetals were considered to determine optimal ex-
plosion welding conditions. It is shown that the use of «granulit RP» for explosion welding eliminates blast-
ing effects on the surface of the cladding layer. This is due to the presence of a powdered component be-
tween the porous ammonium nitrate granules. Stable detonation of the explosive at the required detona-
tion velocity, regardless of air temperature and humidity, can be ensured by selecting the ratio of porous 
granular ammonium nitrate to ground ammonium nitrate.  

Keywords: Ammonium nitrate, detonation velocity, blasting effect, testing, strength  

Acknowledgements: V. H. Kantor for organizing and conducting experiments 

To cite: Pervukhina O. L., Denisov I. V., Pervukhin L. B., Shishkin T. A. Investigation of the possibility of us-
ing granulites for explosion welding. Izvestia VSTU; 2025; 306(11):20–28. 
https://doi.org/10.35211/1990-5297-2025-11-306-20-28 

 

Высокое качество крупногабаритных би-

металлов, а также круглогодичность их про-

изводства методом сварки взрывом обеспе-

чиваются в первую очередь энергоносите-

лем – взрывчатым веществом (ВВ) [1]. Энер-

гия химического превращения ВВ переходит 

в механическую энергию метания с задан-

ной скоростью плакирующего листа, затра-

чивается на нагрев окружающей среды и со-

здание в ней ударных волн. Параметром ВВ, 

определяющим его свойства является ско-

рость детонации, величина которой исполь-

зуется при расчете режимов сварки взры-

вом. На скорость детонации влияют его со-

став, диаметр (толщина в плоском заряде), 

плотность, агрегатное состояние, размеры 

частиц, влажность, наличие оболочки. С уве-

личением диаметра (толщины) заряда ско-

рость детонации повышается, достигая сво-

его максимального значения при некотором 
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Рис. 1.  Зависимость скорости детонации промышленных ВВ от высоты заряда:  
1 – NH4NO3+Д/т (96:4%) марка МП; 2 – NH4NO3+Д/т (94,5:5,5%)+2%Н2О; 3, 4, 5 – АТ-1, АТ-2, 

АТ-3 (Аммонит 6ЖВ+NH4NO3 в соотношении 50:50%, 33:67%, 25:75% соответственно);  
6, 7, 8 , 9, 10 – смесь аммонит 6ЖВ+кварцевый песок в соотношении 75:25%, 60:40%, 

50:50%, 40:60%, 25:75% соответственно (графики 1 и 2 – данные [1], 3 – 10 – данные [2])  
 

предельном диаметре d, различном для раз-

ных ВВ. Стационарное распространение де-

тонации возможно лишь для зарядов, диа-

метр которых d>dкр. Другим важным пара-

метром, влияющим на скорость детонации 

ВВ, является его плотность. 

На основе опыта промышленного произ-

водства биметаллов сформулированы ос-

новные требования к ВВ для сварки взры-

вом крупногабаритных изделий: 

– Скорость детонации в плоских зарядах 

толщиной от 15 до 120 мм не более 3000 м/с. 

– ВВ при укладке заряда не должно 

уплотняться и слёживаться. 

– Стабильность детонации плоского за-

ряда на больших площадях до 30 м2. 

– Невысокая стоимость ВВ и возможность 

приготовления его в день использования из 

компонентов, не являющихся взрывчатым 

материалом. 

– Возможность механизированного изго-

товления и раскладки заряда на поверхно-

сти листа. 

Этим требованиям в той или иной мере 

отвечают и используются для сварки взры-

вом следующие ВВ: 

 – Аммониты №6ЖВ и его смеси с амми-

ачной селитрой, солью, содой, песком, сва-

рочные аммониты смесей аммонита 6ЖВ с 

аммиачной селитрой (АТ-1, АТ-2, АТ-3), а 

также трехкомпонентные смеси ТНТ – 

NH4NO3–NaCl (А-40, А-50).   

– Гранулиты (Игданиты) – смеси аммиач-

ной селитры (гранулированной, молотой, 

пористой, микропористой) с дизельным 

топливом (АСДТ, за рубежом ANFO). 

Информация о свойствах ВВ, применяе-

мых при сварке взрывом,  наиболее полно 

собрана в работе [2, 3], где, на основе анали-

за данных различных исследователей, опи-
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саны свойства смесей аммонита 6ЖВ с ам-

миачной селитрой, песком, солью, свароч-

ных аммонитов А-40, А-50, АТ-1, АТ-2, АТ-3. 

Показано, что скорость детонации этих ВВ 

зависит от плотности и толщины заряда, 

влажности, содержания компонентов и гра-

нулометрического состава (рис. 1). Колеба-

ния скорости детонации достигают 1000-

1200 м/с, а при повышении плотности свы-

ше 1·103 кг/м3 наблюдаются отказы. В этих 

условиях, по-видимому, наблюдается пере-

ход детонации в режим самораспространя-

ющегося взрывного процесса (СВП), кото-

рый распространяется на значительные рас-

стояния с существенно пониженным, по 

сравнению с детонацией, энерговыделением 

[4, 5], что приводит к нарушению процесса 

образования соединения и появлению де-

фектов сплошности соединения слоёв. 

 При раскладке крупногабаритных заря-

дов площадью до 20 м2 практически невоз-

можно обеспечить равномерную плотность 

порошкообразного заряда по всей поверхно-

сти заряда, а следовательно, его детонацию 

с определённой скоростью. Наличие участ-

ков с повышенной или пониженной скоро-

стью детонации приводит к искривлению 

фронта детонации, нарушению заданного 

режима сварки взрывом и как следствие по-

явлению дефектов (неприваров, участков 

пониженной прочности, свищей, разруше-

ний плакирующего слоя и т.п.). 

Применение забоек в виде слоя песка на 

поверхности заряда позволяет снизить кри-

тический диаметр и обеспечить стабильную 

детонацию крупногабаритного заряда. Ско-

рость и стабильность детонации порошко-

образных зарядов не зависит от температу-

ры окружающего воздуха, но зависит от 

влажности аммиачной селитры [3]. 

Недостатки аммонитов при их использо-

вании для сварки взрывом: 

– требуются специальные разрешения на 

приобретение, перевозку и хранение; 

– порошкообразные аммониты и их смеси 

слёживаются при хранении, не обеспечива-

ется равномерная плотность в объёме заря-

да; 

– изготовление смесей аммонита с грану-

лированной селитрой, песком, солью, как 

правило, производится вручную на месте 

ведения взрывных работ, что трудоёмко и 

качество смешивания зависит от влажности 

компонентов и человеческого фактора.  

Гранулиты (Игданиты). Наиболее тех-

нологичными при промышленном произ-

водстве биметалла сваркой взрывом явля-

ются смеси пористой аммиачной селитры с 

дизельным топливом по следующим причи-

нам: 

– исходные компоненты аммиачная се-

литра и дизельное топливо не являются 

Состав, время прохождения детонационной волны между базами  

и скорость детонации при взрыве опытного заряда 

Гранулит  Номер 

базы 

Время прохождения, 

мск. 

Скорость, 

м/с 

РП-1. Состав 50% ПАС, 50% молотой ПАС 

и 3% дизтоплива, толщина 35 мм 

1 118 2542 

2 114 2632 

3 110 2727 

РП-3. Состав 75% ПАС, 25% молотой ПАС 

и 3% дизтоплива, толщина 35 мм 

1 159 1887 

2 158 1899 

3 158 1899 

РП-3. Состав 75% ПАС, 25% молотой ПАС 

и 3% дизтоплива, толщина 35 мм, под 

слоем песка высотой (в гребне до 

170мм) 

1 131 2290 

2 131 2290 

3 118 2542 
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Рис. 2.  Форма, изготовленная для опытных зарядов 

взрывчатыми материалами и не требуется 

получение специальных разрешений на их 

приобретение, перевозку и хранение; 

– изготовление гранулитов возможно в 

стационарных условиях с использованием 

специальных установок или на месте взрыв-

ных работ с использованием гравитацион-

ных смесителей; 

– гранулы аммиачной селитры имеют 

сферическую форму, поэтому при раскладке 

крупногабаритного заряда не происходит 

его локального уплотнения.   

Результаты исследования свойств смесей 

пористой селитры различных марок с ди-

зельным топливом и их применение на 

практике приведены в работе [1]. При этом 

установлено: 

– для обеспечения стабильной детонации 

зарядов АСДТ необходимо использовать при 

температуре воздуха ниже 10оС зимние мар-

ки ДТ; 

– прирост скорости детонации в АСДТ из 

пористой аммиачной селитры на 1 мм заря-

да составляет в среднем 47-50 м/с в диапа-

зоне толщин от 20 до 45 мм и 10-11 м/с в 

диапазоне толщин от 45 до 90 мм; 

– параметры детонации скорость и ста-

бильность зависят от пропитывающей и 

удерживающей способности пористой ам-

миачной селитры, влажности и температуры 

окружающего воздуха. 

Опыт работы по сварке взрывом с смеся-

ми аммонита с аммиачной селитрой в соот-

ношении от 1:1 до 1:4 показал, что их ско-

рость и стабильность детонации не зависит 

от температуры и влажности окружающего 

воздуха [3]. Это связано с тем, что простран-

ство между сферическими гранулами селит-

ры в смеси аммонита с селитрой заполнено 

аммонитом, а в игданите занято воздухом, 

температура и влажность которого опреде-

ляется окружающей средой.  

Для подтверждения влияния воздуха на 

свойства ВВ исследовали гранулит марки 

РП-3 (ТУ 7276-028-11692478-2002) произ-

водства ООО НПФ «Взрывтехнология», кото-

рый представляет собой смесь в различных 

соотношениях гранулированной и молотой 

аммиачной селитры, пропитанной 3% ди-

зельного топлива. Однако непосредственно 

для сварки взрывом этот состав не приме-

нялся, в связи с чем, необходимо провести 

комплекс исследований, включающих опре-

деление взаимосвязи состава гранулита РП-

3 со структурой и свойствами полученных 

биметаллов. Цель данной работы: исследо-

вание влияния состава энергоносителя на 

скорость детонации, а также свойства полу-
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ченных биметаллов для определения опти-

мальных режимов сварки взрывом.  

Методика исследований предусматрива-

ла исследование влияния соотношения гра-

нулированной и порошковой фракций пори-

стой аммиачной селитры в гранулите РП-3 

на скорость детонации крупногабаритного 

заряда, а также определение структуры со-

единения, сплошности и прочности соеди-

нения, воздействие гранулита РП-3 на по-

верхность меди и титана.  

Эксперименты 

Изготовление опытных зарядов гранули-

та РП-1 и РП-3 и эксперименты по измере-

нию скорости детонации производилось в 

производственных условиях стационарного 

пункта производства ПВВ Ржевского филиа-

ла ООО НТФ «Взрывтехнология». На метал-

лической пластине размерами 100х1000 мм 

располагался заряд состава согласно табли-

це. Толщина заряда 35 мм, ширина 80 мм, 

длина 1000 мм. Скорость детонации измеря-

лась на трёх участках, база расстояние меж-

ду точками 300 мм. Заряды были открыты-

ми и с засыпкой песком толщиной 70 мм.  

Опытные заряды формировались засып-

кой взрывчатых составов в специально из-

готовленные формы с донной частью, вы-

полненной из металла сталь Ст.3 толщиной 

5мм. Борта форм изготавливались из полос 

пенокартона, толщиной 5мм и высотой 

35мм, приклеиванием на металлическое ос-

нование термоклеем. Внутренние размеры 

изготовленных форм 970х80ммх35мм. 

В бортах форм на высоте 15 мм от дна, 

через проколы с помощью термоклея за-

креплялись 4 ионизационных датчика (дли-

на измерительной базы 300 мм) многока-

нального измерителя скорости детонации 

ZВS-10 (ионизационный метод измерения). 

В торцевой части формы, со стороны ПД де-

лалось отверстие для установки ЭД (рис. 2).  

Изготовление гранулита РП производи-

лось порциями перемешиванием компонен-

тов в заданном соотношении в последова-

тельности: сначала смешивалась измель-

чённая и гранулированная селитра в задан-

ном соотношении (таблица). В полученную 

смесь добавляли 3% дизельного топлива, 

окрашенного красителем Судан II и переме-

шивали.  

Поверхность засыпанного материала вы-

равнивалась шпателем до уровня высоты 

борта (рис. 3, а). Изготовленные заряды пе-

реносились к месту подрыва, датчики под-

соединялись к магистральному кабелю из-

мерителя скорости детонации ZВS-10, затем 

вводился ЭД, монтировалась взрывная цепь 

и производился подрыв. 

Во всех экспериментах заряды детониро-

вали полностью, о чем свидетельствует от-

сутствие остатков ВВ, значительная воронка 

во влажном грунте и степень деформации 

металлической пластины. Для оценки влия-

ния «забойки» на развитие детонационного 

процесса над опытным зарядом с составом 

Рис. 3. Опытные заряды, изготовленные из составов РП-1 и РП-3 (а), заряд РП-3  
с забойкой из песка (б) 

а б 
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РП-3 был насыпан песок (мелкий, сухой, 

штукатурный) общей массой 50 кг, без опа-

лубки, с высотой в гребне до 170 мм (рис. 3, 

б). Опытный заряд с составом РП-3 с забой-

кой из песка также детонировал полностью, 

при этом величина воронки взрыва была 

существенно больше, чем при взрывах заря-

дов без забойки. 

Для исследования влияния гранулита РП-

3 на качество соединения были проведены 

эксперименты по сварке взрывом титана со 

сталью (ВТ1-0 + 09Г2С и меди со сталью 

(М1+09Г2С) зарядами РП-3 состава 75/25 

плюс 3% дизельного топлива. Толщина за-

ряда выбиралась исходя из обеспечения для 

сварки титана скорости детонации 2400 м/с, 

для меди – 2500 м/с мм и 2700 м/с.  

После сварки взрывом проводили визу-

ально-измерительный контроль (ВИК) раз-

меров и внешнего вида поверхности полу-

ченных биметаллов. Для определения каче-

ства соединения осуществляли ультразву-

ковой контроль (УЗК) сплошности соедине-

ния слоёв биметалла прибором УСД-46 (чув-

ствительность контроля Д5Э). Зона кон-

троля составляла 4-6 мм, скорость сканиро-

вания 100 мм/с, шаг сканирования 6 мм.  

Испытание прочности соединения на от-

рыв плакирующего слоя проводили на 

шляпных образцах [6], согласно схеме испы-

таний, представленной на рис. 4, а. Для двух-

слойных листов толщиной свыше 25 мм 

производили механическую обработку об-

разца со стороны основного слоя с доведе-

нием его толщины до 25 мм. При изготовле-

нии образцов обеспечивали соосность по 

диаметру 16 мм и 19 мм.   

Результаты испытаний 

В результате сварки взрывом образцы 

получили незначительную деформацию. Не 

выявлено следов бризантного действия 

взрывчатого материала на поверхность пла-

кирующего слоя из титана и меди. Сохране-

ние после взрывного нагружения исходного 

вида поверхности упрощает технологию за 

счет исключения операции по нанесению 

защитных покрытий в виде краски и плёнок 

на поверхность плакирующего листа. 

Для испытаний прочности соединения 

титана со сталью отобрано 6 образцов: три 

из зоны начала процесса сварки взрывом и 

три из зоны окончания сварки. Для испыта-

ний прочности соединения меди со сталью 

отобрано от листа, сваренного при скорости 

детонации РП-3 равной 2500 м/с три образ-

ца из конечной зоны процесса сварки взры-

вом. Образцы, отобранные из начальной зо-

ны, расслоились при изготовлении образ-

цов. От листа, сваренного при скорости де-

тонации РП-3 равной 2700 м/с отобрано три 

образца зоны начала процесса сварки взры-

вом и три образца из конечной зоны. 

Рис. 4. Схема испытаний прочности соединения слоёв на отрыв плакирующего слоя 
(а) и образец сталь-медь после испытаний на отрыв плакирующего слоя (б):  

1 – матрица, 2 – пуансон, 3 – испытуемый образец 

а б 
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Отрыв плакирующего слоя произошёл по 

линии соединения, которая имеет волнооб-

разную форму (рис. 4, б). На диаграмме 

нагружения наблюдали площадку текучести 

вначале нагружения, далее резкое возраста-

ние до значений 300-450 МПа и отрывом 

плакирующего слоя. 

Анализ результатов испытаний прочно-

сти соединения показал: 

1. Соединение стали с титаном в начале 

процесса сварки с мелкой волной без вклю-

чений расплавленных участков на волнах, в 

конечной зоне величина волн увеличилась, 

наблюдаются на волнах локальные участки 

расплавов. Прочность соединения на всех 

образцах высокая более 450 МПа, что связа-

но с наклёпом зоны соединения в процессе 

сварки взрывом и отсутствием в зоне соеди-

нения литых включений (интерметалли-

дов). 

2. Высокие показатели прочности соеди-

нения слоёв на отрыв более 300МПа получе-

ны при сварке меди со сталью при скорости 

детонации РП-3 равной 2500 м/с и 2700 м/с.  

По результатам исследований в ООО 

«Битруб Интернэшнл» изготовлены с ис-

пользованием гранулита РП-3 состава 75% 

ПАС, 25% молотой ПАС и 3% дизтоплива 

партии биметаллов: латунь Л63+инвар 36Н, 

марки AISI 430+AI+AISI 304, марки 08сп+ХВГ, 

марки 08сп+06ХВГ, марки 08сп+ 45ХН2МФА.  

Заключение 

Использование для сварки взрывом 

взрывчатого вещества Гранулит РП-3 

(ТУ7276-028-11692478-2002): 

• исключает бризантное воздействие на 

поверхность плакирующего слоя из-за 

наличия порошкообразной ПАС между 

гранулами селитры, что позволяет не 

наносить на поверхность защитных по-

крытий в виде краски и плёнок; 

• обеспечивает за счёт подбора соотно-

шения гранулированной и молотой 

ПАС стабильную детонацию взрывча-

того вещества с требуемой скоростью 

детонации; 

• не требуется применение промышлен-

ных ВВ, кроме средств инициирования 

заряда; 

• изменение соотношения гранулиро-

ванной и молотой ПАС позволит обес-

печить требуемый режим сварки взры-

вом, что в свою очередь повысит каче-

ство биметалла и стабильность свойств 

по поверхности крупногабаритных ли-

стов, а также исключит влияние на 

процесс сварки взрывом изменение 

температуры окружающего воздуха.  

• гранулит РП-3 рекомендуется приме-

нять при промышленном производстве 

сваркой взрывом биметаллов.  
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Введение 

Благодаря высокой удельной прочности, 

титан и алюминиевые сплавы находят свое 

применение в высокотехнологичных отрас-

лях промышленности, таких как авиастрое-

ние, ракетно-космическая отрасль, судо-

строение и др. 

Сваренные взрывом соединения титана с 

алюминиево-магниевым сплавом АМг6 

применяются в ракетно-космической про-

мышленности для изготовления корпусов 

антенно-фидерных устройств.  

Технология сварки предполагает исполь-

зование промежуточного слоя из чистого 

алюминия для соединения между собой сло-
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ев титана и алюминиевого сплава. Алюми-

ниевый слой выполняет функцию «буфера 

пластичности» при сварке, обеспечивая до-

статочный уровень пластической деформа-

ции для образования соединения на обеих 

границах. Этот способ сварки способен обес-

печить требуемую прочность и низкую де-

фектность соединений для большинства 

применений. 

Качество соединений может снижаться 

вследствие образования дефектов, таких как 

непровары и оплавленные участки. Наибо-

лее существенные дефекты могут возникать 

на границе титана с алюминиевым слоем. 

Если энергия, W2 затрачиваемая на пласти-

ческую деформацию на этой границе ока-

жется слишком большой, то это может при-

вести к формированию оплавленных участ-

ков, содержащих интерметаллиды системы 

Al-Ti. Слишком низкая энергия W2 может 

привести к недостаточному уровню пласти-

ческой деформации, результатом чего могут 

быть непровары, расслоения и трещины. 

Воздействие ультразвуковых колебаний 

на материал прослойки при сварке взрывом 

может способствовать снижению количе-

ства дефектов и повышению качества со-

единений. Ранее было показано, что сварка 

взрывом с одновременным воздействием 

ультразвука позволяет повысить качество 

получаемых соединений и расширить об-

ласть свариваемости металлов [1]. 

Целью данной работы являлось исследо-

вание влияния воздействия ультразвуковых 

колебаний при сварке взрывом на алюмини-

евый слой при сварке трехслойного соеди-

нения ВТ1-0 + А5 + АМг6.  

Материалы и методы 

В качестве основных материалов для 

сварки использовали титан ВТ1-0, чистый 

алюминий марки А5 и алюминиевый сплав 

АМг6.  

Схема сборки под сварку показана на рис. 

1. В качестве неподвижной пластины высту-

пала пластина АМг6 с габаритными разме-

рами 200х80 мм. Габариты промежуточного 

алюминиевого слоя и метаемой пластины 

составляли 240х120 мм и 260х150 мм. Раз-

ница в габаритах пластин позволила выне-

сти сварочные зазоры из зоны сварки и 

Рис. 1. Схема сборки под сварку с воздействием ультразвука: 1 – основание;  
2 – неподвижная пластина АМг6; 3 – сварочный зазор; 4 – прослойка; 5 – волновод;  

6 – ультразвуковой преобразователь; 7 – метаемая пластина ВТ1-0;  
8 – заряд взрывчатого вещества 
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установить их на основании, исключив, тем 

самым, влияние материала зазоров на про-

цесс и результат сварки. Кроме того, такая 

схема сборки применялась для обеспечения 

целостности и точности расположения де-

талей при воздействии ультразвуковых ко-

лебаний. 

Ультразвуковые колебания подводили к 

промежуточному слою из чистого алюминия 

с противоположной стороны начала процес-

са детонации. Частота колебаний составляла 

около 18 кГц, амплитуда перемещения на 

торце ультразвукового преобразователя ≈ 4 

мкм, время воздействия ультразвука перед 

сваркой составляло около 5 секунд. 

Расчетные режимы сварки приведены в 

таблице. Выбранные режимы сварки нахо-

дятся вблизи нижней границы области сва-

риваемости и обеспечивают близкий к ми-

нимально необходимому уровню пластиче-

ской деформации на границе титана с алю-

минием. Было сварено два образца, один из 

которых сваривали с применением ультра-

звуковых колебаний, второй образец служил 

контрольным образцом. 

Результаты и их обсуждение 

По результатам механических испытаний 

прочность соединений лежала в диапазоне 

85-90 МПа, а разрушение происходило по 

прослойке алюминия. Исследование микро-

структуры показало, что в обоих соединени-

ях сформировался волновой профиль на 

границе между алюминиевой прослойкой и 

слоем АМг6. При сварке с ультразвуком дли-
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Рис. 2. Общий вид трехслойных соединений ВТ1-0+А5+АМг6:  
а – сварка без ультразвука; б – сварка с ультразвуком 
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на и размах волнового профиля оказались 

несколько меньше, чем в контрольном об-

разце. В образце, сваренном с ультразвуком, 

длина и размах составили 532 и 161 мкм, 

против 600 и 178 мкм в образце, сваренном 

без ультразвука. Граница алюминиевого 

слоя с титаном имела плоскую форму, опла-

вы или иные дефекты при стандартных уве-

личениях не обнаруживались.  

При помощи метода дифракции обратно-

рассеяных электронов (EBSD) было исследо-

вано строение алюминиевой прослойки на 

границе с титаном. На рис. 3 приведены IPF-

карты ориентации зерен алюминия, на ко-

торой чёрными линиями показаны границы 

зёрен с углом разориентации >10° (больше-

угловые границы). Результаты исследова-

ния показали значительную разницу в 

структуре алюминия между образцами, сва-

ренными разными способами.  

При сварке без ультразвука в структуре 

алюминия вблизи границы можно выделить 

области с различным зеренным строением. 

На расстоянии > 40 мкм от границы с тита-

ном (рис. 3, а), в алюминии сохранились ис-

ходные границы зерен, однако накопленные 

пластические деформации привели к появ-

лению внутри зерен малоугловых границ и 

увеличению разориентации между субзер-

нами. На расстоянии от 15 до 40 мкм от гра-

ницы, алюминий имеет волокнистую струк-

туру, образованную удлиненными зернами 

толщиной до 9 мкм с включениями мелких 

зерен с размерами около 2 мкм. На границе с 

Рис. 3. IPF карты алюминиевого слоя в области на границе с титаном, черной линией 
показаны границы зерен с углом разориентации >10°:  

а – сварка без ультразвука; б – сварка с ультразвуком 

а 

б 
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титаном располагается слой мелкозернисто-

го алюминия толщиной около 10-15 мкм, с 

размером зёрен 1,5-2,5 мкм. Наиболее веро-

ятно, что образование мелкозернистой 

структуры стало результатом протекания в 

этой области динамической рекристаллиза-

ции, локальный характер которой был свя-

зан с одной стороны – локализованностью 

пластических деформаций, с другой – той 

особенностью, что начало протекания дина-

мической рекристаллизации требует дости-

жения критической деформации [2]. 

При сварке с ультразвуком в структуре 

алюминия практически не прослеживались 

очертания исходных зерен или выраженные 

границы между областями с различным 

размером или формой зерна (рис. 3, б); вме-

сто этого во всей исследованной области 

наблюдалась практически однородная 

структура, состоящая из рекристаллизован-

ных зерен и субзерен с размерами около 0,5-

3,5 мкм. По результатам картирования ме-

тодом ДОЭ, суммарная протяженность гра-

ниц с углом разориентировки >10° на иссле-

дуемом участке при сварке с ультразвуком 

была в 2 раза больше, чем при сварке без 

ультразвука и составила 7,43 мм против 

3,64 мм в контрольном образце.  

Объяснить наблюдаемое измельчение 

структуры можно эффектами, которые ока-

зывают акустические колебания на дисло-

кационную структуру материала. Ранее мно-

гие исследователи уже отмечали, что воз-

действие ультразвука на металл в процессе 

деформации способствует измельчению 

зерна [3 … 6]. Причина этого эффекта заклю-

чается в том, что воздействие ультразвука в 

процессе пластической деформации приво-

дит к значительному повышению плотности 

и подвижности дислокаций, что способству-

ет ускоренному протеканию динамической 

рекристаллизации [3, 4]. 

При сварке взрывом рекристаллизован-

ные слои могут в некоторых случаях приво-

дить к снижению прочности соединений. 

Например, в работе [7] было показано, что 

граница рекристаллизованного слоя АМг6 с 

металлом, имеющего деформированную 

структуру, может быть слабым местом всего 

сваренного взрывом композита. В этой си-

туации увеличение толщины рекристалли-

зованного слоя и исчезновение деформиро-

ванной структуры под действием ультра-

звука, которое было получено в чистом 

алюминии, можно считать положительным 

эффектом, поскольку рекристаллизация 

происходит в большем объеме и стирается 

четкая граница между рекристаллизован-

ным и деформированным слоем.  
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Сварка взрывом является эффективным 

технологическим методом для получения 

многослойных материалов, в том числе, со 

специальными служебными свойствами [1]. 
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Высокая прочность соединений, образован-

ных сваркой взрывом, достигается за счет 

высокоскоростного соударения компонен-

тов, которому предшествует глубокое очи-

щение свариваемых поверхностей за счет их 

сверхзвукового обтекания потоком горячего 

ударно-сжатого газа, что резко улучшает ад-

гезию компонентов. Важным фактором, 

влияющим на качество сварного соедине-

ния, является тепловыделение, которое 

происходит по двум причинам – сильное 

сжатие газа в зазоре между свариваемыми 

пластинами [2] и ударная пластическая де-

формация металла в зоне контакта. Харак-

тер пластической деформации при сварке 

взрывом рассмотрен в работе [3].  

Тепловыделение имеет положительный 

эффект, поскольку оно повышает термиче-

скую активацию процесса, но также оно мо-

жет приводить и к образованию дефектов 

структуры сварного соединения, например, 

зон локального оплавления. Поэтому для 

планирования условий сварки взрывом тре-

буется теоретическая оценка тепловыделе-

ния и температуры разогрева свариваемого 

металла.  

Авторы настоящей работы теоретически 

изучают процесс деформационного тепло-

выделения при сварке взрывом термобиме-

талла латунь/инвар, который широко ис-

пользуется для термокомпенсаторов, чув-

ствительных элементов термометров, тер-

морегуляторов, автоматов защиты электро-

сети, термоприводов и других подобных 

устройств. Поскольку пластическая дефор-

мация при сварке взрывом происходит при 

сильно изменяющихся температуре и скоро-

сти деформации, то для проведения числен-

ного анализа процесса пластического де-

формирования и расчета деформационного 

тепловыделения необходимы уравнения, 

описывающее сопротивление пластической 

деформации компонентов рассматриваемо-

го биметалла в широком диапазоне условий 

нагружения. Для этой цели планируется ис-

пользовать феноменологическое уравнение, 

предложенное Джонсоном и Куком [4, 5] для 

описания сопротивления материалов боль-

шим пластическим деформациям в условиях 

высоких скоростей деформации и темпера-

тур. Уравнение Джонсона-Кука часто приме-

няется в исследованиях для аппроксимации 

результатов механических испытаний 

вследствие своей простоты [6]. 

Уравнение Джонсона-Кука определяет 

напряжение 𝜎 в материале в зависимости от 

накопленной пластической деформации 𝜀𝑝, 

скорости пластической деформации 𝜀𝑝̇ и 

температуры 𝑇. В общем виде данное урав-

нение может быть записано в виде произве-

дения трех сомножителей: 

𝜎 = 𝑓1(𝜀𝑝)𝑓2(𝜀𝑝̇)𝑓3(𝑇),                                                                  (1) 

где 𝑓1(𝜀𝑝) – диаграмма деформирования ма-

териала, полученная при базовых значениях 

𝑇0 и 𝜀𝑝̇,0, и записанная в координатах 𝜎 − 𝜀𝑝; 

𝑓2(𝜀𝑝̇) – зависимость от скорости деформа-

ции, равная 1 при 𝜀𝑝̇ = 𝜀𝑝̇,0; и 𝑓3(𝑇) – зависи-

мость от температуры, равная 1 при 𝑇 = 𝑇0. 

Обычно, для функции 𝑓1(𝜀𝑝) используют 

степенной закон пластического упрочнения 

и записывают ее в виде: 

𝑓1(𝜀𝑝) = 𝐴 + 𝐵𝜎𝑛                                                                                    (2) 

для функции 𝑓2(𝜀𝑝̇) обычно используют ло-

гарифмическую зависимость: 

𝑓2(𝜀𝑝̇) = 1 + 𝐶
𝑙𝑛 𝜀̇𝑝

𝑙𝑛 𝜀̇𝑝,0
                                                                           (3) 

а функцию 𝑓2(𝜀𝑝̇) записывают как: 

𝑓3(𝑇) = 1 − 𝑇ℎ
𝑚  где                                                                                   

𝑇ℎ = (𝑇 − 𝑇0) (𝑇𝑚 − 𝑇0)⁄                                                            (4) 

Здесь 𝐴, 𝐵, 𝑛, 𝐶, 𝑚 и 𝑇𝑚 – константы мате-

риала: 𝐴 – предел текучести, 𝐵 и 𝑛 – кон-

станты деформационного упрочнения при 

базовых условиях (𝑇0, 𝜀𝑝̇,0); 𝐶 и 𝑚 – соответ-

ственно коэффициенты чувствительности 

материала к скорости деформации и изме-

нению температуры; 𝑇𝑚 – температура, при 

которой сопротивление материала пласти-

ческому деформированию равно нулю, 
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обычно принимаемая равной температуре 

плавления материала, и 𝑇ℎ – «гомологиче-

ская» температура. В качестве же базовой 

температуры, как правило, принимается 

комнатная 𝑇0=20 °C. 

Таким образом, после суммирования (1-4) 

уравнение Джонсона-Кука принимает вид: 

𝜎 = (𝐴 + 𝐵𝜀𝑝
𝑛) (1 + 𝐶𝑙𝑛

𝜀̇𝑝

𝜀̇𝑝,0
) (1 − 𝑇ℎ

𝑚)           (5) 

В настоящей работе на основании прове-

денных механических испытаний и литера-

турных данных оценены параметры уравне-

ния Джонсона-Кука для компонент термо-

биметалла латунь/инвар, изготовленного 

авторами методом сварки взрыва ранее, см., 

например, [7]. Следует отметить, что по-

скольку свойства листовых латуни и инвара 

могут значительно отличаться в зависимо-

сти от истории их изготовления [8, 9] ка-

либровку уравнения Джонсона-Кука следует 

проводить именно для тех материалов, ко-

торые использовались при сварки взрывом 

конкретного биметалла, для которого пла-

нируется проводить численные расчеты. 

 Сопротивление пластической дефор-

мации при комнатной температуре и 

стандартной скорости деформации 

Объектами исследования в настоящей 

работе являлись пластины латуни Л63 и же-

лезоникелевого сплава 36Н (Инвар), соот-

ветственно толщиной 4,8 и 1,7 мм. Из пла-

стин были изготовлены плоские образцы 

для механических испытаний. Образцы ис-

пытывали на растяжение в испытательной 

машине марки МИМ.2-100. Испытания про-

водили при комнатной температуре  20 °C 

со стандартной скоростью деформации 𝜀̇ = 

10-3 с-1 до разрушения. Для каждого матери-

ала были испытаны три образца и по ре-

зультатам испытаний получены усреднен-

ные диаграммы 𝜎 − 𝜀, где 𝜀 - полная дефор-

мация, см. синие графики с синими точками 

на рис. 1а, б. Для получения графиков 𝜎 − 𝜀𝑝 

из полной деформации была вычтена упру-

гая составляющая, равная 𝜎 𝐾⁄ , где 𝐾 – тан-

генс наклона графика в упругой области. 

Графики 𝜎 − 𝜀𝑝 показаны на рис. 1 серым 

цветом.  

Для калибровки уравнения Джонсона-

Кука следует использовать только точки 

графика, соответствующие деформации об-

разца до ее локализации (образования шей-

ки). Полагалось, что локализация наступает 

тогда, когда при дальнейшей деформации 

Рис. 1. Диаграммы растяжения латуни Л63 (а) и Инвара 36Н (б).  
Комнатная температура 𝑇020 °C, скорость деформации 𝜀̇ = 10-3 с-1. Синим цветом 

показаны исходные кривые 𝜎 − 𝜀, серым – пересчитанные кривые 𝜎 − 𝜀𝑝, красным – точки 

до предполагаемой локализации пластической деформации (образования шейки), 
сплошными черными жирными линиями – аппроксимация красных точек степенной 

зависимостью (2), штриховыми черными жирными линиями – экстраполяция до 
предельной пластической деформации 

а б 
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образца напряжение 𝜎 либо перестает уве-

личиваться (плато) либо начитает падать 

(достигается явный максимум). Первый слу-

чай реализуется для латуни, см. красные за-

четные точки на рис. 1а, второй – для инва-

ра, см. рис. 1б. Деформационное упрочнение 

сплавов (красные точки) было аппроксими-

ровано степенной зависимостью (2) и полу-

чены следующие значения: для латуни – 

𝐴=248 MPa, 𝐵=287,5 MPa и 𝑛=0,483; для ин-

вара – 𝐴=575 MPa, 𝐵=513,3 MPa и 𝑛=0,3016. 

Следует отметить, что полученные значения 

степени в законе упрочнения блики к тако-

вым, полученным для латуни и Инвара в ра-

ботах [10, 11] – 𝑛=0,54 для латуни в [10] и 

𝑛=0,3025 для Инвара в [11]. 

Зависимость сопротивления пластиче-

ской деформации от скорости деформа-

ции 

Поскольку в настоящей работе механиче-

ские испытания проводили только при од-

ной скорости деформации 𝜀̇ = 10-3 с-1, то для 

описания зависимости пластического 

упрочнения от скорости деформации ис-

пользовали литературные данные. 

Клозак с соавторами исследовали меха-

нические свойства «обычной латуни» при 

ударном нагружении в широком диапазоне 

температур [9]. В качестве исследуемых 

объектов использовались листовые образцы 

обычной латуни, толщиной 1 мм. Перфора-

ционные испытания проводили на стан-

дартной испытательной машине Zwick с 

начальными скоростями удара от 40 до 120 

м/с в диапазоне температур 20-260 °C. Зави-

симость 𝑓2(𝜀𝑝̇) аппроксимировали логариф-

мической функцией (3) со следующими па-

раметрами 𝐶 = 0,0021 и 𝜀𝑝̇,0 = 1 с-1. Данные 

параметры были приняты в уравнении 

Джонсона-Кука для латуни Л63 в настоящей 

работе. 

Ли с соавторами исследовали механиче-

ские свойства сплава Invar Fe-36Ni [10]. Ци-

линдрические образцы, размером 22 мм и 

55 мм, испытывали на сжатие в испыта-

тельной машине Split Hopkinson Pressure Bar 

со скоростями деформации от 10-3 до 104 с-1 в 

диапазоне температур 20-800 ℃. Зависи-

мость напряжения от скорости деформации 

аппроксимировали линейной функцией 

𝑓2(𝜀̇) = 1 + 𝐶𝜀̇, что, однако не согласуется с 

другими известными экспериментальными 

данными. 

Кавулок с соавторами исследовали пла-

стичность сплава Invar 36 при высоких тем-

пературах [12]. Испытание образцов, диа-

Рис. 2. Зависимость предела прочности 𝝈𝑩 Инвара 36Н от скорости деформации 𝜺̇ и 
температуры 𝑻 (а). Зависимости 𝝈𝑩 = 𝒇(𝜺̇) для фиксированных значений 𝑻 (б). 

Оцифровано с рис. 3 в [12] и обработано в настоящей работе 

а б 
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Рис. 3.  Температурная зависимость коэффициента 𝑪 чувствительности к скорости 
деформации для Инвара, построенная по результатам работ [11] и [12]  

 

метром 10 мм и длиной 116,5 мм, проводили 

на растяжение в испытательной машине 

HDS-20 со скоростями деформации 0,09; 2,5 

и 75 с-1 в диапазоне температур 800-1390 °C. 

Результаты испытаний представлены в виде 

трехмерного графика предел прочности – 

скорость деформации - температура, см. рис. 

2а. Отметим, что далее мы будем использо-

вать такой параметр материала как предел 

прочности (предел временного сопротивле-

ния), характеризующий способность мате-

риала сопротивляться большим пластиче-

ским деформациям, которые происходят в 

материале при сварке взрывом. 

На рис. 2, б представлены зависимости 

предела прочности от скорости деформации 

при фиксированных температурах в интер-

вале 800-1390 °C, построенные по оцифро-

ванным данным графика на рис. 2, а. Видно, 

что при каждой конкретной температуре 

напряжение сопротивления большим пла-

стическим деформациям хорошо описывает-

ся логарифмической зависимостью (3). При 

повышении температуры вследствие тер-

мического разупрочнения графики 

𝜎 = 𝑎 + 𝑏 ∙ 𝑙𝑛𝜀̇ смещаются вниз, а также не-

сколько изменяют свой наклон. Из сравне-

ния последнего уравнения с (3) следует, что 

коэффициенты чувствительности Инвара к 

скорости деформации следует рассчиты-

вать, как 𝐶 = 𝑏 𝑎⁄ .  

Значение коэффициента 𝐶 при комнатной 

температуре было получено оцифровкой 

данных с графика, представленного на рис. 3 

в работе [11], и последующего регрессион-

ного анализа, аналогично как показано на 

рис. 2б. Суммируя результаты обработки 

данных из работ [11] и [12] была построена 

температурная зависимость 𝐶(𝑇) для Инва-

ра в диапазоне температур 20-1390 °C, см. 

рис. 3. Из рис. 3 видно, что коэффициент 

чувствительности к скорости деформации 

повышается с температурой. Данный ре-

зультат представляется логичным, так как с 

повышением температуры в сплаве ускоря-

ется диффузия и его полная пластическая 

деформация включает деформацию ползу-

чести, величина которой зависит от времени 

деформирования. Зависимость 𝐶(𝑇) была 

аппроксимирована экспоненциальной 

функцией 𝐶 = 𝐶0exp (𝑇 𝑇0⁄ ) с константами 

𝐶0 = 0,0174 и 𝑇0 = 523,8 °C. 

Зависимость сопротивления пластиче-

ской деформации от температуры 

Для анализа деформирования материала 

в процессе сварки важно знать его сопро-

тивление большим пластическим деформа-

циям, которое характеризуется пределом 

прочности материала 𝜎𝐵.  

На рис. 4, а красной линией показана тем-
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пературная зависимость предела прочности 

латуни Л63 из [13] в диапазоне температур 

20-800 °C и синими точками латуни 

62,6Cu37,4Zn из [8] в диапазоне температур 

700-850 °C. Желтая ромбоэдрическая точка 

указывает температуру солидуса латуни 

Л63, равную 900 °C. Из рис. 4, а видно хо-

рошее соответствие между данными [13, 8], 

и из них следует, что с повышением темпе-

ратуры прочность латуни монотонно пони-

жается и при 650 °C опускается до 20 МПа, 

то есть материал становится очень пласти-

чески податливым. Сплошной черной лини-

ей показано температурное изменение 𝜎𝐵, 

предсказанное с использованием уравнения 

(4) и параметров 𝑇0 = 20,15 °C, 𝑇𝑚 = 930,15 и 

𝑚 = 1,45 из [10]. Видно, что предсказанная 

таким образом кривая 𝜎𝐵 = 𝑓(𝑇) сильно за-

вышает прочность латуни, особенно при вы-

соких температурах. Поэтому эксперимен-

тальная зависимость 𝜎𝐵 = 𝑓(𝑇) была кусоч-

но аппроксимирована: на участке 20-642,55 

°C уравнением (4) с параметрами с 𝑇0=20 °C, 

𝑇𝑚=642,55 °C и 𝑚 = 1,35, и прямой 𝜎𝐵 = 0 на 

участке 642,55-900 °C, см. черную штрихо-

вую линию на рис. 4а. Следует отметить, что 

полученное значение параметра 𝑚 = 1,35 

близко к значениям 𝑚 = 1,45 и 𝑚 = 1,132, со-

ответственно полученных для латуни в [10] 

и [14]. 

На рис. 4, б показаны экспериментальные 

температурные зависимости сопротивления 

Инвара пластическому деформированию из 

работы [11] для температурного интервала 

20-800 °C, из [15] для интервала 20-900 °C и 

из [12] для интервала 800-1390 °C. Данные 

температурный зависимости были получе-

ны при разных скоростях деформации, ука-

занных на рис. 4а. Видно, что все кривые по-

казывают подобную тенденцию – монотон-

ное понижение 𝜎𝐵 вплоть до температур, 

близких к температуре солидуса Инвара, 

равную 1439 °C согласно [12]. Совместная 

аппроксимация уравнением (4) данных, по-

лученных в [12] и [15] соответственно для 

скоростей деформации 𝜀̇ =  910 - 2  с - 1  

и  𝜀̇ = 810-4 с-1, дала следующее значение ко-

эффициента чувствительности к температу-

ре 𝑚 = 0,624, с 𝑇0=20 °C и 𝑇𝑚=1390 °C. Следу-

ет отметить, что это значение 𝑚 близко к 

значению 𝑚 = 0,55, полученному Джонсоном 

и Куком для АРМКО-железа [5]. Полученная 

аналитическая зависимость показана на рис. 

4, б штриховой линией. 

Заключение 

В результате комплексного подхода, со-

четающего собственные эксперименты по 

растяжению и анализ литературных данных, 

впервые получены полные наборы парамет-

ров уравнения Джонсона-Кука для компо-

нент биметаллической системы латунь 

Л63/Инвар 36Н, предназначенной для полу-

Рис. 4. Температурные зависимости предела прочности латуни (а) и Ивара (б) 
 

а б 
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чения сваркой взрывом. 

Выявлено, что для сплава Инвар 36Н 

стандартная модель является недостаточ-

ной вследствие сильной температурной за-

висимости его чувствительности к скорости 

деформации. Предложена модифицирован-

ная версия уравнения, в которой параметр 𝐶 

представлен как экспоненциальная функция 

температуры: 𝐶(𝑇) = 0,0174 × 𝑒𝑥𝑝(𝑇 523,8⁄ ). 

Остальные параметры составили: 𝐴=575 

МПа, 𝐵=513,3 МПа, 𝑛=0.3016, 𝑚=0,624. 

 Полученные уравнения имеют следую-

щий вид. 

Для латуни Л63: 

𝜎 = (248 + 287,5𝜀𝑝
0,483) (1 +

0,0021𝑙𝑛
𝜀̇𝑝,   с−1

1, с−1 ) [1 − (
𝑇−20°С

622,55°С
)

1,35

]                      (6) 

Для Инвара 36Н: 

𝜎 = (575 + 513,3𝜀𝑝
0,3016) (1 +

0,0174𝑒𝑥𝑝
𝑇 

523,8 °С
𝑙𝑛

𝜀̇𝑝,   с−1

1, с−1 ) [1 −

(
𝑇−20°С

1370°С
)

0,624

]                                                                                                    (7) 

Данные уравнения будут использованы 

для аналитического исследования деформи-

рования компонент и деформационного 

тепловыделения при сварке взрывом тер-

мобиметалла латунь/Инвар. 
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Введение 

Биметалл медь-алюминий предназначен 

для изготовления из него контактных пере-

ходников и токоведущих элементов элек-

тротехнического назначения с улучшенным 

комплексом физико-механических характе-

ристик. Однако, между медью и алюминием 

возможно образование хрупких интерме-

таллидов при локальном оплавлении, пре-

пятствующих формированию качественного 

биметалла. Авторами ряда работ [1-5] пока-

зано, что качественное сварное соединение 

при сварке металлов взрывом можно полу-

чить, если в зоне соединения реализуется 

определённый уровень сдвиговых деформа-

ций. Несмотря на многочисленные исследо-

вания по выявлению влияния параметров 

соударения на свариваемость взрывом меди 

с алюминием, с позиции типа взаимодей-

ствия металлов данная проблема практиче-

ски не освещена, что требует проведения ис-

следование химического и фазового состава 

в зоне соединения биметалла алюминий-

медь, полученного сваркой взрывом вблизи 

нижней границы свариваемости.  

Материалы и методы исследования 

В опытах использовались листы меди 

толщиной 2,5 мм и алюминия толщиной 4 

мм марок М1 и АД1 соответственно (табли-

ца). Для сварки взрывом меди с алюминием 

применялась классическая плоскопарал-

лельная схема соударения двух пластин 

(рис. 1). Режимы сварки в опытах обеспечи-

вали пересечение нижней границы сварива-

емости за счет изменения угла соударения γ 

от 8,95˚ до 12,5˚ при постоянной скорости 

точки контакта Vk = D = 1750 м/с (рис. 2) [7] 

при этом энергия пластических деформаций 

W2 изменялась в диапазоне значений от 0,12 

до 0,24 МДж/м2. 

 
Характеристики используемых материалов 

Марка 
Химический состав, мас.% 

σв, МПа 
Fe Ni S As Pb Zn Cu Al Mn Ti 

М1 
до 

0,005 
до 

0,002 
до 

0,004 
до 

0,002 
до 

0,005 
до 

0,004 
≥ 

99.9 
– – – 220 

АД1 – – – – – 
до 
0,1 

до 
0,05 

≥ 
99 

до 
0,05 

до 
0,05 

90 

 

Рис. 1. Схема соударения пластин при сварке взрывом:  
ВВ – взрывчатое вещество (аммонит 6 ЖВ+песок); D – скорость детонации; Vк – скорость 

точки контакта; Vс – скорость соударения; γ – угол соударения; H – высота заряда;  
h – высота зазора 
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Скорость детонации взрывчатого веще-

ства D контролировалась электроконтакт-

ным методом [9] с помощью прибора для 

измерения микросекундных интервалов 

времени КТБ «Интервал». В качестве взрыв-

чатого вещества использовалась смесь ам-

монита 6ЖВ с кварцевым песком в соотно-

шении 50/50.  

Механические испытания сваренных 

взрывом биметаллов проводили на отрыв 

слоев образцов - выдавок [8] согласно ОСТ 

5.9311–78 на разрывной машине Р-20 (рис. 3, 

а). Заготовки под образцы вырезались из 

центра полученных пластин, количество 

вырезанных элементов на одну пластину 

композита составляет 4 штуки, из которых 

один используется для подготовки микро-

шлифа, а оставшиеся три для подготовки 

образцов для механических испытаний на 

отрыв слоёв (рис. 3, б).  

Микроструктура и характер разрушения 

зоны соединения образцов после механиче-

ских испытаний исследованы на растровом 

электронном микроскопе Versa 3D, FEI, Че-

хия, с применение детектора обратно-

отраженных электронов (CBS), позволяю-

щем получать изображение с высоким кон-

трастом по атомному номеру элемента Z (Cu 

– 29, Al – 13) при низкой чувствительности к 

рельефу образца. Таким образом области 

электронной фотографии, соответствующие 

чистой меди, будут ярко белого цвета, алю-

Рис. 2. Область свариваемости меди с алюминием при сварке взрывом [7]:  
НГ – нижняя граница, ВГ – верхняя граница. Римскими цифрами обозначены режимы 

сварки, использованные в опытах  
 

Рис. 3. Схема проведения механических испытаний на отрыв слоёв биметалла (а)  
и внешний вид образцов-выдавок после разрушения (б) 

а б 

W2 = 0,12  

МДж/м
2
 

W2 = 0,17  

МДж/м
2
 

W2 = 0,24  

МДж/м
2
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минию – темного, а оплавам - серого цвета. 

Содержание элементов и их распределение 

поперек границы соединения получены с 

помощью системы энерго-дисперсионного 

анализа Oxford AZtecLive Expert с детекто-

ром Ultim Max 65. Стехиометрию интерме-

таллидных соединений уточняли с помощью 

рентгеноструктурного фазового анализа на 

дифрактометре D8 Advance (Bruker, Герма-

ния). Идентификацию фаз осуществляли в 

программном обеспечении к дифрактометру 

Diffrac.EVA (version 4.2.1) с использованием 

Рис. 4. Методика определения содержания компонентов в зоне разрушения: 
а – фрактография зоны соединения после механических испытаний;  

б – результат обработки электронного изображения с помощью инструмента Threshold  
в программе ImageJ v1.52   

 

а б 

Рис. 5. Микроструктура и распределение элементов внутри оплавов в зоне 
соединения биметалла Cu-Al, полученного вблизи нижней границы свариваемости 

взрывом при энергиях W2 (МДж/м2) 0,12 (а, г); 0,17 (б, д); 0,24 (в, е) 
 

г е д 

а б в 



Известия ВолгГТУ 

 

48 

лицензионной базы данных Powder 

Diffraction File-2 (The International Center for 

Diffraction Data). Процентное содержание 

компонентов (алюминий, медь, оплав) в 

зоне соединения разрушенных при механи-

ческих испытаниях образцов определяли на 

медной и алюминиевых сторонах выдавок 

по разнице контраста как отношение пло-

щади включений (рис. 4, а) к общей площади 

электронного изображения с помощью ин-

струмента Threshold программы ImageJ v1.52 

(рис. 4, б).  

Количественное содержание оплавов 

вдоль линии соединения определяли ли-

нейным методом при обработке в той же 

программе электронных фотографий, полу-

ченных на микрошлифах. 

Полученные результаты и их обсужде-

ние 

Исследование микроструктуры показало, 

что зона соединения меди с алюминием в 

исследованном диапазоне низких энергий 

является безволновой (рис 5, а – в). Однако 

несмотря на крайне малые энерговложения, 

Рис. 6. Влияние энергии пластических деформаций на фазовый состав в зоне  
соединения сваренных взрывом образцов биметалла медь-алюминий вблизи  

нижней границы свариваемости 

Рис. 7. Диаграмма состояния алюминий-медь [10] 
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в образце, полученном на режиме ниже 

нижней границы свариваемости (0,12 

МДж/м2) обнаружены оплавы в количестве 

15 %, имеющие мелкодисперсное двухфаз-

ное строение (рис. 5, г).  

При повышении энергии W2 c 0,12 до 0,17 

и 0,24 МДж/м2 содержание оплавов скачко-

образно увеличивается до 56 и 57 % соот-

ветственно (рис. 8), а соотношения элемен-

тов в оплавах Al/Cu изменяется от 80/20 до 

50/50 At.% (рис. 5, г – е). 

Сопоставление результатов элементного 

(рис. 5, г.) и рентгеноструктурного анализов 

(рис 6) с известной диаграммой состояния 

алюминий-медь (рис. 7) позволяет предпо-

ложить, что при сварке взрывом на режимe 

ниже нижней границы свариваемости обра-

зуются участки локального оплавления, 

имеющие фазы (Al)+θ (твердый раствор на 

основе соединения CuAL2) и состав близкий 

к эвтектическому с температурой плавления 

548 ˚С. 

Однако механические испытания на от-

рыв слоев показали, что энергии пластиче-

ской деформации равной 0,12 МДж/м2 недо-

статочно для образования прочного соеди-

нения. В изломе (рис. 8, г, ж) наблюдаются 

гладкая поверхность меди и отдельные 

участки прихватившегося алюминия, что 

указывает на то, что отрыв в основном про-

изошел по межфазной границе, на которой 

не возникло условий для создания прочного 

соединения между свариваемыми металла-

ми. Отсутствие оплавов в изломе говорит о 

том, что они находятся внутри участков 

прихватившегося алюминия на границе с 

медью. 

Повышение энергии W2 до 0,17 МДж/м2 

приводит к росту содержания оплавов вдоль 

линии соединения до 56% и увеличению со-

держания меди в некоторых из них (рис. 5, 

д) до значений, соответствующих η-фазе (на 

основе соединения AlCu). Однако механиче-

ские свойства на отрыв слоев соединения 

достигают значений равноправности. На по-

верхности разрушенного образца –выдавки 

(рис. 8, б, д) обнаружены обширные области 

оплавленного металла, покрытые сеткой 

трещин и малые островки чистой гладкой 

меди. Участки приварившегося алюминия, в 

отличие от образца № I полученного на ре-

жиме ниже нижней границы свариваемости, 

теперь имеют характерный вид вязкого раз-

рушения при близком процентном содержа-

нии по площади излома (рис. 9). Это свиде-

тельствует о том, что основная область раз-

Рис. 8. Микроструктура образцов биметалла Cu-Al при энергиях W2 [МДж/м2]  
0,12 (а); 0,17 (б); 0,24 (в) и соответствующая им фрактография зоны соединения  

со стороны меди (а, б, в) и со стороны алюминия (г, д, е) 
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рушение теперь проходит по оплавам и име-

ет хрупкий характер. 

При параметрах сварки взрывом, соот-

ветствующих энергии W2 равной 0,24 МДж/м2 

происходит вовлечение в процессы совмест-

ной пластической деформации более глубо-

ких слоев соударяемых металлов [7] при 

неизменном линейном содержании оплавов 

(57%). Содержание элементов Al/Cu равное 

60/40 At.% (рис. 5, е) соответствует двух-

фазной области диаграммы η+θ. При меха-

нических испытаниях соединение также 

оказалось равнопрочным (рис. 9). В изломе 

(рис. 8, в, е) теперь преобладают участки 

вязкого разрушения по алюминию (до 73%). 

Внутри видимых участков оплавленного ме-

талла отсутствуют трещины, а их количе-

ство снизилось с 55-63% до 21-27%.  

Выводы 

При сварке взрывом меди с алюминием в 

диапазоне энергии пластической деформа-

ции 0,17 - 0,24 МДж/м2 концентрация меди в 

составе оплавов меняется с 20 до 50 Ат.% 

при фазовом составе соответствующему 

твердому раствору на основе соединения 

CuAl2 плюс алюминий. При достижении рав-

нопрочности вблизи нижней границы сва-

риваемости разрушение в основном прохо-

дит по оплавам (55-63 %) и имеет хрупкий 

характер с сеткой трещин, доля вязкого раз-

рушения по алюминию составляет 34-36 %. 

Повышение энергии пластических деформа-

ций W2 от 0,17 до 0,24 МДж/м2 приводит к 

снижению содержания оплавов в изломе до 

21-27%, а доля вязкого разрушения по алю-

минию возрастает до 57-73%. Отсутствие 

изменения линейного содержания оплавов в 

микроструктуре при двукратном снижении 

содержания оплавов в изломе свидетель-

ствует о смещении зоны разрушения образ-

цов биметалла вглубь алюминия и измене-

нии преимущественного характера излома с 

хрупкого на вязкий. 

 

Рис. 9. Влияние энергии пластических деформаций на прочность и содержание 
оплавов вдоль линии соединения и по площади излома сваренных взрывом  

образцов биметалла медь-алюминий вблизи нижней границы свариваемости 
 

W2, МДж/м
2
 

σ, МПа; kопл., % 
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Введение 

В настоящее время наиболее перспектив-

ными для хранения водорода считаются 

сплавы, состоящие из интерметаллидов, ко-

торые могут удерживать его с высокой объ-

емной плотностью при относительно низ-

ком давлении [1]. Среди них особое место 

занимают материалы на основе TiFe – со-

единения типа АВ, которое является одной 

из наиболее многообещающих для коммер-

ческого применения интерметаллических 

фаз благодаря доступной цене и высокой 

водородной емкости [2]. 

У интерметаллида TiFe на поверхности 

имеются естественные оксидные пленки, 

препятствующие поглощению водорода. Для 

инициации процесса требуется предвари-

тельная термическая активация [3], вклю-

чающая отжиг в вакууме или в водородной 

атмосфере, способствующий удалению ок-

сидных слоёв и подготовке поверхности к 

поглощению водорода. 

За последние несколько лет появились 

новые методы повышения водородной ём-

кости TiFe, такие как легирование циркони-
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ем или увеличение содержания титана сверх 

стехиометрического уровня [4-7]. 

Двухфазные сплавы, состоящие из соеди-

нения TiFe и твердого раствора железа в β-

титане, полученные путём плавки шихты с 

66,6 ат.% титана и 33,4 ат.% железа и дли-

тельного отжига при 800 °C, способны по-

глощать до 2,5 мас.% водорода при темпера-

туре 150–350 °C [4], что является более вы-

соким показателем в сравнении с гидридом 

интерметаллического соединения TiFe, 

имеющего весовую водородную емкость в 

~1,9% [8]. 

Также известна модификация техноло-

гии, при которой для получения материала 

используют дуговое плавление с последую-

щим отжигом при 1200 °C, что даёт трёхфаз-

ную структуру – TiFe, β-Тi и Ti₂Fe. Такой 

сплав способен поглощать водород без 

предварительной термической активации. 

Анализ поверхностного оксидного слоя по-

казывает, что концентрация титана в окси-

дах на поверхности β-Тi и Ti₂Fe выше, чем на 

TiFe, что ускоряет поглощение водорода [7]. 

Исследования подтверждают, что сплав с 

содержанием около 12 % Ti₂Fe и 30 % β-Тi 

способен при комнатной температуре по-

глотить 2,6 мас.% водорода [9]. 

Увеличение водородной емкости и по-

вышение эффективности гидрирования обу-

словлены позитивным влиянием интерме-

таллидной фазы Ti₂Fe, которая, согласно 

«правилу обратной стабильности», должна 

иметь меньшую энтальпию образования 

гидридов по сравнению с TiFe и обеспечи-

вать увеличение содержания водорода в 

гидридах до 2,08–3,09 мас. % [11]. 

Интерметаллидная фаза Ti₂Fe в системе 

Ti-Fe является метастабильной Наибольший 

объем сведений о её формировании встре-

чается в исследованиях сварки титана со 

сталью с помощью сварки взрывом (рис. 1, а) 

Рис. 1. Образование слоя Ti₂Fe при сварке взрывом титана с низкоуглеродистой 
сталью (а) [6], и в процессе термической обработки сварных биметаллов титан-

сталь, выполненных этим способом (б) [8] 
 

а б 
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[9], а также в работах, посвящённых терми-

ческой обработке таких сварных соедине-

ний (рис. 1, б) [10]. 

Для исследования процессов формирова-

ния данного интерметаллида в условиях 

ударно-волновой обработки нами использо-

вался метод взрывного прессования смесей 

порошков титана и железа. Этот подход 

имитирует условия сварки взрывом в обла-

сти контакта частиц Ti и Fe и одновременно 

значительно увеличивает площадь кон-

тактной поверхности, что способствует сни-

жению путей диффузии элементов при 

межфазных реакциях. 

Ударно-волновое нагружение порошоч-

ной смеси, расположенной на стальной под-

ложке, осуществлялось при помощи фрон-

тально падающей детонационной волны, 

проходящей через стальную промежуточ-

ную прокладку (см. рис. 2). Режим прессова-

ния обеспечивал предельно высокое уплот-

нение исходного порошка вплоть до прак-

тически монолитного состояния [8]. 

Анализ структуры и состава фаз прово-

дился с помощью растровой электронной 

микроскопии с использованием системы FEI 

Versa 3D LoVac, оснащенной встроенной си-

стемой микрорентгеноспектрального энер-

го-дисперсионного анализа EDAX ApolloX. 

Рис. 2. Схема ударно-волновое нагружения порошковых смесей  

Рис. 3. Вид частиц Fe и Ti в исходной порошковой смеси 
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В работе использовались порошки ком-

мерческого производства. Частицы порошка 

Ti имели губчатую форму, а Fe – округлую с 

ярко выраженным поликристаллическим 

строением (рис. 3). Состав компонентов в 

порошковой смеси был принят равным: 36 

мас.% Fe и 64 мас.% Ti, что практически со-

ответствует составу Ti2Fe и обеспечивает 

одинаковое объемное содержание Fe и Ti в 

смеси и, соответственно, максимальную 

площадь межфазной поверхности Ti/Fe.  

Для проведения исследования были вы-

браны параметры взрывного нагружения, 

приведенные в таблице.   

При использовании режима нагружения, 

обеспечивающего давление сжатия Р = 11,5 

ГПа, течение материала частиц при уплот-

нении порошка, по-видимому, носило лами-

нарный характер (рис. 4, а) и энергетическо-

го воздействия на границе фаз оказалось 

 
Технологические параметры взрывного нагружения и расчетные  

значения условий ударно-волнового сжатия порошковой смеси 
H, мм h, мм δ, мм ВВ 100% D, км/с Т, °С Р, ГПа 

70 
7,0 1,5 6ЖВ 4,2 

777 11,5 
85 831 12,5 

 

Рис. 4. Структура (а), химический (б) и фазовый состав (в) прессовок, полученных  
на режиме нагружения:  

t = 777 °С, Р = 11,5 ГПа 

а б 

Подложка 
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недостаточно для химического взаимодей-

ствия. 

Рентгеноструктурный фазовый анализ 

полученного cпрессованного материала, 

проведённый на дифрактометре Bruker D8 

Advance, показал, что его фазовый состав по-

сле взрывного нагружения соответствует 

первоначальному составу используемой по-

рошковой смеси (рис. 4, в). Даже в непосред-

ственной близости от межфазных границ 

химический состав фаз практически не из-

меняется (рис. 4, б). 

При более жестком режиме нагружения 

(Р = 12,5 ГПа), была обеспечена локализация 

пластической деформации частиц в их по-

верхностных слоях, приведшая к ярко вы-

раженному струйному (турбулентному) ха-

рактеру течения частиц с образованием спе-

цифических «завихрений» (рис. 5, а) и, как 

следствие, интенсивному трению по их по-

верхностям. В результате, на границах обра-

зовались слои интерметаллического соеди-

нения толщиной до 20 мкм (рис. 5, б), кото-

рое по химическому составу и кристалличе-

скому строению (рис. 5, в) может быть иден-

тифицировано как метастабильная фаза 

Ti2Fe. 

Детальное исследование микроструктуры 

зоны взаимодействия показало ее неодно-

родность с равномерными периодическими 

Рис. 5. Структура (а), химический (б) и фазовый состав (в) прессовок, полученных  
на режиме нагружения:  

t = 830 °С, Р = 12,5 ГПа 
 

а б 

в 

Подложка 
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колебаниями состава (рис. 6). При этом от-

клонения составили до 7 %.  

Полученные в результате проведенных 

исследований данные указывают, что меха-

низм пластического деформирования ча-

стиц титана и железа при взрывном прессо-

вании существенно влияет на процесс обра-

зования метастабильной фазы Ti2Fe. Можно 

высказать несколько предположений о при-

роде этого влияния. Наиболее правдоподоб-

ной выглядит гипотеза о том, что интерме-

таллид образуется в том случае, когда при 

ударно-волновой обработке в материале об-

разуется жидкая фаза. Данное суждение, 

прежде всего, не противоречит опыту свар-

ки взрывом титановых сплавов и сталей. 

Поскольку температура контактного 

плавления в системе Ti-Fe невысока и со-

ставляет в соответствии с диаграммой со-

стояния системы 1085 °С, то ее достижение 

на границах частиц в случае взрывного 

прессования в режимах, обеспечивающих 

среднюю расчетную температуру разогрева 

831 °С, при наличии струйных течений ме-

талла и крайней неоднородности темпера-

турного поля, является вполне вероятным. 

Неоднородность слоя образовавшегося ин-

терметаллида в этом случае может быть ре-

зультатом одновременного роста его зерен 

из достаточно большого числа центров кри-

сталлизации в объеме жидкой фазы в усло-

виях быстрого охлаждения за счет теплоот-

вода в «холодные» участки структуры и ме-

таллическую подложку. 

Заключение  

На режимах взрывного прессования, 

обеспечивающих равномерную деформацию 

частиц порошка без струйных течений, сме-

си порошков Fe и Ti сохраняют фазовый со-

став, соответствующего составу исходной 

порошковой смеси.  

При прессовании металлических порош-

ков Fe и Ti на режимах с локализованной 

пластической деформацией и струйными 

течениями материала частиц, наблюдается 

образование термодинамически неравно-

вестного и химически неоднородного ин-

терметаллида Ti2Fe. При этом его содержа-

ние в структуре явно недостаточно для 

обеспечения возможности использования 

спрессованного материала в качестве акку-

мулятора водорода, тем более что в струк-

туре остается достаточно большое количе-

ство непрореагировавших фаз – титана и 

железа. 

Использование последующей термиче-

Рис. 6. Микроструктура (а) и химический состав (б) зоны взаимодействия Ti и Fe 
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ской обработки прессовок с практически ну-

левой пористостью, развитой сеткой меж-

фазных поверхностей и прочной связью 

между зернами структурных компонентов, 

создающих благоприятные условия для раз-

вития диффузионных процессов, выглядит 

весьма перспективным возможным путем 

решение этой проблемы. 
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Введение 

Гидриды металлов являются отличными 

кандидатами для твердотельного хранения 

водорода из-за их высокой объемной плот-

ности водорода и работы в условиях уме-

ренного давления и температуры [1]. Особое 

место в изучении возможности использова-

ния интерметаллических соединений зани-

мает система Ti - Fe, в которой стехиометри-

ческий TiFe обладает высокой водородной 

емкостью (~1,9 мас.% H) [2] и отличается 

дешевизной используемого при его изго-

товлении сырья.  Проблемы, связанные с 

необходимостью активации поверхности 

данного интерметаллида [3, 4] могут быть 

решены путем легирования и/или измене-

ния стехиометрии состава в сторону увели-

чения содержания титана, что устраняет 

необходимость активации, а также улучшает 

водород-сорбционные свойств [5, 6]. Подоб-

ные изменения состава приводят к образо-

ванию интерметаллических соединений 

Ti2Fe и Ti4Fe, что обеспечивает получение на 

поверхности материала оксидных слоев, 

имеющих высокую реакционную способ-

ность по отношению к водороду [7].  
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Проведенные ранее исследования водо-

род-аккумулирующих сплавов системы Ti – 

Fe в основном были сосредоточены на изу-

чении влияния легирующих элементов на 

кинетику поглощения водорода, при этом 

вопросы фазообразования оказались прак-

тически не затронутыми. В этой связи в 

данной работе было проведено исследова-

ние влияния твердофазного спекания на об-

разование интерметаллических соединений 

в материалах на основе титана и железа. 

Для получения сплавов использовалась 

технология взрывного нагружения порош-

ковых смесей с последующей термической 

обработкой прессовок, которая проводилось 

в заваренной стальной ампуле с засыпкой 

порошка титана с целью минимизации хи-

мического взаимодействия образцов с атмо-

сферой внутри ампулы за счет использова-

ния более высокой активности и развитой 

поверхности порошкового титана (рис. 1).  

Изучение процесса формирования фазо-

вого и структурного состава проводилась на 

образцах с 36 мас.% Fe и 64 мас.% Ti, полу-

ченных взрывным прессованием на режи-

мах, обеспечивающих давления сжатия Р = 

11,5 ГПа, без химического взаимодействия 

компонентов и Р = 12,5 ГПа приводящей к 

образованию интерматаллической прослой-

ки Ti2Fe на границе титана и железа. 

Нагрев до температур 500, 700 и 900 °С 

осуществлялся в течении двух часов и со-

провождался выдержкой при данной темпе-

ратуре в течение 1 часа и последующим 

Рис. 1. Схема ампулы для термической обработки материалов 

Рис. 2. Диаграмма состояния железо-титан [8] 
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охлаждением ампулы на воздухе. 

В соответствии с фазовой диаграммой си-

стемы Ti –Fe (рис. 2) выбранные температу-

ры нагрева для материала с 36 мас.% Fe и 64 

мас.% Ti соответствуют термодинамическо-

му равновесию интерметаллидов TiFe и/или 

Ti2Fe c α-Ti (500°С) или β-Ti (700°С и 900°С). 

При этом появление жидкой фазы теорети-

чески невозможно. 

Исследования структуры образцов пока-

зало, что нагрев до 500 °С не приводит к из-

менению структуры и химического состава 

фаз, полученных взрывным нагружением. 

(рис. 3.) как для случая использования ре-

жима нагружения, обеспечивающего t = 777 °С 

и Р = 11,5 ГПа (рис. 3, а), так и для более 

жесткого режима с t = 830 °С и Р = 12,5 ГПа. В 

последнем случае роста или уменьшения 

прослойки Ti2Fe (рис. 3, б) не наблюдается. 

Повышение температуры термической 

обработки спрессованного материала до 700 °С 

приводит к изменениям его фазового соста-

ва. Для прессовки, полученной на режиме с 

давлением прессования 11,5 ГПа начинается 

процесс диффузии – вокруг зерен железа за 

счет его растворения в титане образуется 

Рис. 3. Структура и химический состав фаз после отжига при 500 °С материала 
прессовок, полученных на различных режимах нагружения: 

а – t = 777 °С, Р = 11,5 ГПа; б – t = 830 °С, Р = 12,5 ГПа 
 

а б 

Рис. 4. Структура и химический состав фаз после отжига при 700 °С материала 
прессовок, полученных на различных режимах нагружения: 

а – t = 777 °С, Р = 11,5 ГПа; б – t = 830 °С, Р = 12,5 ГПа 
 

а б 
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слой β-твердого раствора (ИМС Ti4Fe) тол-

щиной до 10 мкм (рис. 4, а). Интересно отме-

тить, что при охлаждении на воздухе обра-

зовавшийся β-Ti не испытывает предсказы-

ваемого диаграммой состояния (рис. 2) эв-

тектоидного распада на TiFe и α-Ti и, следо-

вательно, при комнатной температуре явля-

ется термодинамически нестабильной фа-

зой. 

В случае термической обработки при 

температуре 700 °С в структуре прессовки, 

полученной на давлениях прессования в 

12,5 ГПа, кроме образования β-Ti наблюда-

ется частичное растворение сформировав-

шейся в процессе взрывного прессования 

интерметаллидной фазы Ti2Fe. При этом 

внутри нее возможно образование незначи-

тельного количества участков TiFe2 (рис. 4, 

б). Однако, большая часть материала, под-

вергнутого термической обработке, пред-

ставляет собой остатки непрореагировав-

шего титана и железа. 

При температуре 900°C за счет ускорения 

диффузии растворение сформировавшейся в 

процессе взрывного прессования интерме-

таллидной фазы Ti2Fe протекает полностью 

(рис. 5, б) и структура материалов, получен-

ных на двух использованных режимах 

нагружения, становятся практически одина-

ковой: в ней хорошо различимы остатки не-

растворившихся частиц железа, зона β-

твердого раствора железа в титане (ИМС 

Ti4Fe), а также участки Ti, практически не 

содержащие Fe (рис. 5, а, б).  

Рис. 5. Структура (а, б) и химический (в, г) состав фаз после отжига при 900 °С 
материала прессовок, полученных на различных режимах нагружения:    

а – t = 777 °С, Р = 11,5 ГПа; б – t = 830 °С, Р = 12,5 ГПа 
 

а б 

в г 
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При этом вдоль поверхности частиц же-

леза (рис. 5, в, г) формируются многослой-

ные диффузионные слои, содержащие 

(начиная от железа к титану) Fe2Ti, TiFe и 

Ti2Fe, что вполне соответствует существую-

щим классическим представлениям о реак-

ционной диффузии. 

Заключение  

Проведенные исследования позволяют 

заключить, что при кратковременном твер-

дофазном спекании прессовок, полученных 

взрывным прессованием, как в случае ис-

пользования режимов, не ведущих к проте-

канию процессов химического взаимодей-

ствия компонентов порошковой смеси, так и 

при использовании режимов с локализацией 

пластической деформации частиц в их по-

верхностных слоях и формированием слоев 

интерметаллида Ti2Fe, образования доста-

точного количества фаз Ti2Fe или TiFe не 

происходит, что делает эти режимы не пер-

спективными для получения водород акку-

мулирующих сплавов.  

Использование спекания при температу-

рах, обеспечивающих появление жидкой фа-

зы в результате контактного плавления, в 

условиях практически нулевой пористости, 

развитой сетки межфазных поверхностей и 

прочной связи между зернами структурных 

компонентов, создающих благоприятные 

условия для развития диффузионных про-

цессов, выглядит весьма перспективным 

возможным путем решение этой проблемы. 
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